2026届江苏省徐州市铜山区 高二数学第一学期期末学业质量监测试题含解析_第1页
2026届江苏省徐州市铜山区 高二数学第一学期期末学业质量监测试题含解析_第2页
2026届江苏省徐州市铜山区 高二数学第一学期期末学业质量监测试题含解析_第3页
2026届江苏省徐州市铜山区 高二数学第一学期期末学业质量监测试题含解析_第4页
2026届江苏省徐州市铜山区 高二数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省徐州市铜山区高二数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.22.“椭圆的离心率为”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点;从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图①,一个光学装置由有公共焦点的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,如图②,此光线从点发出,经两次反射后又回到了点,历时秒;若,则的长轴长与的实轴长之比为()A. B.C. D.4.如图,在正方体中,E为的中点,则直线与平面所成角的正弦值为()A. B.C. D.5.在直三棱柱中,,,则直线与所成角的大小为()A.30° B.60°C.120° D.150°6.将函数图象上所有点横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.7.设直线的倾斜角为,且,则满足A. B.C. D.8.已知函数,若对任意的,,且,总有,则的取值范围是()A B.C. D.9.过两点和的直线的斜率为()A. B.C. D.10.已知等差数列,,,则数列的前项和为()A. B.C. D.11.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.312.若等比数列的前n项和,则r的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.关于曲线,则以下结论正确的个数有______个①曲线C关于原点对称;②曲线C中,;③曲线C是不封闭图形,且它与圆无公共点;④曲线C与曲线有4个交点,这4点构成正方形14.某商场对华为手机近28天的日销售情况进行统计,得到如下数据,t36811ym357利用最小二乘法得到日销售量y(百部)与时间t(天)的线性回归方程为,则表格中的数据___________.15.若,则与向量同方向的单位向量的坐标为____________.16.不等式的解集是_______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且,(1)求的通项公式;(2)求的最小值18.(12分)已知函数(1)当时,讨论的单调性;(2)当时,证明19.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值20.(12分)已知数列的前n项和为,且,,数列满足:,,,.(1)求数列,的通项公式;(2)求数列的前n项和;(3)若不等式对任意恒成立,求实数k的取值范围21.(12分)如图,在空间直角坐标系中有长方体,且,,点E在棱AB上移动.(1)证明:;(2)当E为AB的中点时,求直线AC与平面所成角的正弦值.22.(10分)已知函数(1)当时,求函数的单调区间;(2)当时,若关于x的不等式恒成立,试求a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据正态曲线的对称性即可求得答案.【详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.2、C【解析】讨论椭圆焦点的位置,根据离心率分别求出参数m,由充分必要性的定义判断条件间的充分、必要关系.【详解】当椭圆的焦点在轴上时,,得;当椭圆的焦点在轴上时,,得故“椭圆的离心率为”是“”的必要不充分条件故选:C.3、D【解析】在图①和图②中,利用椭圆和双曲线的定义,分别求得和的周长,再根据光速相同,且求解.【详解】在图①中,由椭圆的定义得:,由双曲线的定义得,两式相减得,所以的周长为,在图②中,的周长为,因为光速相同,且,所以,即,所以,即的长轴长与的实轴长之比为,故选:D4、D【解析】构建空间直角坐标系,求直线的方向向量、平面的法向量,应用空间向量的坐标表示,求直线与平面所成角的正弦值.【详解】以点D为坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,,,,可得,,,设面的法向量为,有,取,则,所以,,,则直线与平面所成角的正弦值为故选:D.5、B【解析】根据三棱柱的特征补全为正方体,则,为直线与所成角,连接,则为等边三角形即可得解.【详解】根据直三棱柱的特征,补全可得如图所示的正方体,易知,为直线与所成角,连接,则为等边三角形,所以,所以直线与所成角的大小为.故选:B6、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A7、D【解析】因为,所以,,,,故选D8、B【解析】根据函数单调性定义、二次函数性质及对称轴方程,即可求解参数取值范围.【详解】依题意可得,在上为减函数,则,即的取值范围是故选:B【点睛】本题考查函数单调性定义,二次函数性质,属于基础题.9、D【解析】应用两点式求直线斜率即可.【详解】由已知坐标,直线的斜率为.故选:D10、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.11、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.12、B【解析】利用成等比数列来求得.【详解】依题意,等比数列的前n项和,,,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据曲线的方程,以及曲线的对称性、范围,结合每个选项进行逐一分析,即可判断.【详解】①将方程中的分别换为,方程不变,故该曲线关于原点对称,故正确;②因为,解得或,故,同理可得:,故错误;③根据②可知,该曲线不是封闭图形;联立与,可得:,将其视作关于的一元二次方程,故,所以方程无根,故曲线与没有交点;综上所述,③正确;④假设曲线C与曲线有4个交点且交点构成正方形,根据对称性,第一象限的交点必在上,联立与可得:,故交点为,而此点坐标不满足,所以这样的正方形不存在,故错误;综上所述,正确的是①③.故答案为:.【点睛】本题考察曲线与方程中利用曲线方程研究曲线性质,处理问题的关键是把握由曲线方程如何研究对称性以及范围问题,属困难题.14、1【解析】根据已知条件,求出,的平均值,再结合线性回归方程过样本中心,即可求解【详解】解:由表中数据可得,,,线性回归方程为,,解得故答案为:115、【解析】由空间向量的模的计算求得向量的模,再由单位向量的定义求得答案.【详解】解:因为,所以,所以与向量同方向的单位向量的坐标为,故答案为:.16、或【解析】将分式不等式,转化为一元二次不等式求解【详解】因为,所以,解得或.故答案为:或【点睛】本题主要考查分式不等式的解法,还考查了运算求解的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由可求得的值,由可求得数列的通项公式;(2)求得,利用二次函数的基本性质可求得的最小值.【小问1详解】解:由题意可得,解得,所以,.当时,,当时,,也满足,故对任意的,.【小问2详解】解:,所以,当或时,取得最小值,且最小值为.18、(1)单调递减,在单调递增;(2)见解析.【解析】(1)求f(x)导数,讨论导数的正负即可求其单调性;(2)由于,则,只需证明,构造函数,证明其最小值大于0即可.【小问1详解】时,,当时,,∴,当时,,∴,∴在单调递减,在单调递增;【小问2详解】由于,∴,∴只需证明,令,则,∴在上为增函数,而,∴在上有唯一零点,且,当时,,g(x)单调递减,当时,,g(x)单调递增,∴的最小值为,由,得,则,∴,当且仅当时取等号,而,∴,∴,即,∴当时,.【点睛】本题考察了利用导数研究函数的单调性,也考察了利用导数研究函数的最值,解题过程中设计到隐零点的问题,需要掌握隐零点处理问题的常见思路和方法.19、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为20、(1),;(2);(3).【解析】(1)由可得数列是等比数列,即可求得,由得数列是等差数列,即可求得.(2)由(1)可得,再利用错位相减法求和即得.(3)将问题等价转化为对任意恒成立,构造数列并判断其单调性,即可求解作答.【小问1详解】数列的前项和为,,,当时,,则,而当时,,即得,因此,数列是以1为首项,3为公比的等比数列,则,数列中,,,则数列是等差数列,而,,即有公差,则,所以数列,的通项公式分别是:,.【小问2详解】由(1)知,,则,则有,两式相减得:,从而得,所以数列的前n项和.【小问3详解】由(1)知,,依题意得对任意恒成立,设,则,当,,为单调递减数列,当,,为单调递增数列,显然有,则当时,取得最大值,即最大值是,因此,,所以实数k取值范围是.【点睛】思路点睛:一般地,如果数列是等差数列,是等比数列,求数列的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列的公比,然后作差求解21、(1)证明见解析(2)【解析】(1)设,求出,,利用向量法能求出;(2)求出平面的法向量,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论