版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
随州市重点中学2026届高二数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知实数x,y满足,则的最大值为()A. B.C.2 D.13.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.4.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.805.已知,则()A. B.C. D.6.已知函数及其导函数,若存在使得,则称是的一个“巧值点”.下列选项中没有“巧值点”的函数是()A. B.C. D.7.已知、,则直线的倾斜角为()A. B.C. D.8.已知数据的平均数是,方差是4,则数据的方差是()A.3.4 B.3.6C.3.8 D.49.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺10.下列直线中,倾斜角为45°的是()A. B.C. D.11.已知椭圆的左、右焦点分别是,焦距,过点的直线与椭圆交于两点,若,且,则椭圆C的方程为()A. B.C. D.12.在正方体中,与直线和都垂直,则直线与的关系是()A.异面 B.平行C.垂直不相交 D.垂直且相交二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足(),设数列满足:,数列的前项和为,若()恒成立,则的取值范围是________14.已知集合,集合,则__________.15.椭圆x2+=1上的点到直线x+y-4=0的距离的最小值为_________.16.已知,则正整数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.(1)m∈R时,证明l与C总相交;(2)m取何值时,l被C截得的弦长最短?求此弦长18.(12分)中,三内角A,B,C所对的边分别为a,b,c,已知(1)求角A;(2)若,角A的角平分线交于D,,求a19.(12分)数列中,,且.(1)证明;数列是等比数列.(2)若,求数列的前n项和.20.(12分)已知圆,直线(1)判断直线与圆的位置关系;(2)若直线与圆交于不同两点,且,求直线的方程21.(12分)已知点和直线.(1)求以为圆心,且与直线相切的圆的方程;(2)过直线上一点作圆的切线,其中为切点,求四边形PAMB的面积的最小值.22.(10分)如图,在四棱锥中,底面ABCD是边长为1的菱形,且,侧棱,,M是PC的中点,设,,(1)试用,,表示向量;(2)求BM的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.2、A【解析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求出的最大值.【详解】作出可行域如图所示,由可知,此直线可用由直线平移得到,求的最大值,即直线的截距最大,当直线过直线的交点时取最大值,即故选:3、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.4、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C5、B【解析】根据基本初等函数的导数公式及求导法则求导函数即可.【详解】.故选:B.6、C【解析】利用新定义:存在使得,则称是的一个“巧点”,对四个选项中的函数进行一一的判断即可【详解】对于A,,则,令,解得或,即有解,故选项A的函数有“巧值点”,不符合题意;对于B,,则,令,令,则g(x)在x>0时为增函数,∵(1),(e),由零点的存在性定理可得,在上存在唯一零点,即方程有解,故选项B的函数有“巧值点”,不符合题意;对于C,,则,令,故方程无解,故选项C的函数没有“巧值点”,符合题意;对于D,,则,令,则.∴方程有解,故选项D的函数有“巧值点”,不符合题意故选:C7、B【解析】设直线的倾斜角为,利用直线的斜率公式求出直线的斜率,进而可得出直线的倾斜角.【详解】设直线的倾斜角为,由斜率公式可得,,因此,.故选:B.8、B【解析】利用方差的定义即可解得.【详解】由方差的定义,,则,所以数据的方差为:.故选:B9、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B10、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C11、A【解析】画出图形,利用已知条件,推出,延长交椭圆于点,得到直角和直角,设,则,根据椭圆的定义转化求解,即可求得椭圆的方程.【详解】如图所示,,则,延长交椭圆于点,可得直角和直角,设,则,根据椭圆的定义,可得,在直角中,,解得,又在中,,代入可得,所以,所以椭圆的方程为.故选:A.12、B【解析】以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,根据向量垂直的坐标表示求出,再利用向量的坐标运算可得,根据共线定理即可判断.【详解】设正方体的棱长为1.以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,则.设,则,取.,.故选:B【点睛】本题考查了空间向量垂直的坐标表示、空间向量的坐标表示、空间向量共线定理,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由条件求出的通项公式,得到,由裂项相消法再求出,根据不等式恒成立求出参数的范围即可.【详解】当时,有当时,由①有②由①-②得:所以,当时也成立.所以,故则由,即,所以所以,由所以故答案为:【点睛】本题考查求数列的通项公式,考查裂项相消法求和以及数列不等式问题,属于中档题.14、##(-1,2]【解析】根据两集合的并集的含义,即可得答案.【详解】因为集合,集合,所以,故答案为:15、【解析】设与直线x+y-4=0平行的直线方程为,求出即得解.【详解】解:设与直线x+y-4=0平行的直线方程为,所以,代入椭圆方程得,令或.当时,平行线间的距离为;当时,平行线间的距离为.所以最小距离为.故答案为:.16、6【解析】根据组合数和排列数的运算即可求得答案.【详解】由题意,,得.故答案为:6.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)当时,l被C截得的弦长最短,最短弦长为.【解析】(1)求出直线l的定点,进而判断定点和圆C的位置关系,最后得到答案;(2)当圆心C到直线l的距离最大时,弦长最短,进而求出m,然后根据勾股定理求出弦长.【详解】(1)直线l的方程可化为y+3=2m(x-4),则l过定点P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P在圆内,故直线l与圆C总相交(2)圆的C方程可化为:(x-3)2+(y+6)2=25,如图所示,当圆心C(3,-6)到直线l的距离最大时,弦AB的长度最短,此时PC⊥l,又,所以直线l的斜率为,则,在直角中,|PC|=,|AC|=5,所以|AB|=.故当时,l被C截得的弦长最短,最短弦长为.18、(1)(2)【解析】(1)根据正弦定理统一三角函数化简即可求解;(2)根据角平分线建立三角形面积方程求出b,再由余弦定理求解即可.【小问1详解】由及正弦定理,得∵,∴∵,∴∵,∴【小问2详解】∵,∴,解得由余弦定理,得,∴.19、(1)证明见解析;(2).【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行证明即可;(2)运用裂项相消法进行求解即可.【小问1详解】∵,∴,又∵,∴,∴数列是首项为0,公差为1的等差数列,∴,∴,从而,∴数列是首项为2,公比为2的等比数列;【小问2详解】由(1)知,则,∴,∴.20、(1)直线与圆相交;(2)或【解析】(1)通过比较圆心到直线的距离与半径的关系,不难发现直线和圆相交.(2)根据垂径定理,得到圆心与直线的距离,进而列方程求解即可试题解析:(1)将圆方程化为标准方程,所以圆的圆心,半径,圆心到直线的距离,因此直线与圆相交(2)设圆心到直线的距离为,则,又,解得所求直线为或考点:直线与圆的位置关系21、(1)(2)【解析】(1)利用到直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长安全培训记录内容课件
- 家长培训课件教学
- 2026年进口五金产品贸易合同协议
- 房屋赠与合同2026年子女抚养关联
- 2026年通信线路数据传输合同
- 2026年带货直播效果合同
- 2026年快递退货运单合同协议
- 2026年家政派遣合同协议条款
- 2026年工业废气处理工程承包合同
- 2026年医疗设备调试合同协议
- 木门工程售后方案(3篇)
- 电工技能实训试题及答案
- 船厂装配工基础知识培训课件
- 2025年GMAT逻辑推理解析试题
- 2025-2026学年苏教版(2024)小学数学二年级上册(全册)教学设计(附目录P226)
- 2025-2030电子特气行业纯度标准升级对晶圆制造良率影响深度分析报告
- 除夕年夜饭作文600字9篇范文
- 国企公房管理办法
- 公共政策概论-004-国开机考复习资料
- 空调售后维修管理制度
- 建筑装饰装修施工图设计说明
评论
0/150
提交评论