福建省厦门六中2026届高一数学第一学期期末检测模拟试题含解析_第1页
福建省厦门六中2026届高一数学第一学期期末检测模拟试题含解析_第2页
福建省厦门六中2026届高一数学第一学期期末检测模拟试题含解析_第3页
福建省厦门六中2026届高一数学第一学期期末检测模拟试题含解析_第4页
福建省厦门六中2026届高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省厦门六中2026届高一数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则a、b、c的大小顺序为()A. B.C. D.2.已知定义域为R的函数在单调递增,且为偶函数,若,则不等式的解集为()A. B.C. D.3.焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是A. B.C. D.4.已知直线ax+by+c=0的图象如图,则()A.若c>0,则a>0,b>0B.若c>0,则a<0,b>0C.若c<0,则a>0,b<0D.若c<0,则a>0,b>05.已知,,,则下列关系中正确的是A. B.C. D.6.已知,,,则a,b,c的大小关系为()A. B.C. D.7.已知为角终边上一点,则()A. B.1C.2 D.38.已知是第三象限角,且,则()A. B.C. D.9.函数f(x)=A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)10.若集合,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则______12.调查某高中1000名学生的肥胖情况,得到的数据如表:偏瘦正常肥胖女生人数88175y男生人数126211z若,则肥胖学生中男生不少于女生的概率为_________13.当,,满足时,有恒成立,则实数的取值范围为____________14.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.15.某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为______万元.16.已知的图象的对称轴为_________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知p:A={x|x2-2x-3≤0,x∈R},q:B={x|x2-2mx+m2-9≤0,x∈R,m∈R}(1)若A∩B={x|1≤x≤3,x∈R},求实数m值;(2)若﹁q是p的必要条件,求实数m的取值范围18.已知集合,B=[3,6].(1)若a=0,求;(2)xB是xA的充分条件,求实数a的取值范围.19.已知集合,.(1)若,求实数t的取值范围;(2)若“”是“”的必要不充分条件,求实数t的取值范围20.已知函数常数证明在上是减函数,在上是增函数;当时,求的单调区间;对于中的函数和函数,若对任意,总存在,使得成立,求实数a的值21.如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ)求证:;(Ⅱ)当且为的中点时,求与平面所成的角的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由对数的运算性质可判断出,而由已知可得,从而可判断出,进而可比较大小详解】由,故,因为,所以,因为,所以,所以,即故选:D2、D【解析】根据题意,由函数为偶函数分析可得函数的图象关于直线对称,结合函数的单调性以及特殊值分析可得,解可得的取值范围,即可得答案【详解】解:根据题意,函数为偶函数,则函数的图象关于直线对称,又由函数在,单调递增且f(3),则,解可得:,即不等式的解集为;故选:D3、C【解析】设椭圆方程为:,由题意可得:,解得:,则椭圆的标准方程为:.本题选择D选项4、D【解析】由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如图,k<0,即-<0,所以ab>0,因为->0,->0,所以ac<0,bc<0.若c<0,则a>0,b>0;若c>0,则a<0,b<0;故选D.5、C【解析】利用函数的单调性、正切函数的值域即可得出【详解】,,∴,又∴,则下列关系中正确的是:故选C【点睛】本题考查了指对函数的单调性、三角函数的单调性的应用,属于基础题6、D【解析】与中间值1和2比较.【详解】,,,所以故选:D.【点睛】本题考查幂与对数的大小比较,在比较对数和幂的大小时,能化为同底数的化为同底数,再利用函数的单调性比较,否则可借助中间值比较,如0,1,2等等.7、B【解析】先根据三角函数的定义求出,再利用齐次化将弦化切进行求解.【详解】为角终边上一点,故,故.故选:B8、A【解析】由是第三象限角可判断,利用平方关系即可求解.【详解】解:因为是第三象限角,且,所以,故选:A.9、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理10、D【解析】详解】集合,所以.故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由二倍角公式,商数关系得,再由诱导公式、商数关系变形求值式,代入已知可得【详解】,所以,故答案为:12、【解析】先求得,然后利用列举法求得正确答案.【详解】依题意,依题意,记,则所有可能取值为,,,共种,其中肥胖学生中男生不少于女生的为,,,共种,故所求的概率为.故答案为:13、【解析】根据基本不等式求得的最小值,由此建立不等式,求解即可.【详解】解:,,则,∴,当且仅当,即:时取等号,∴,∴,∴实数的取值范围为故答案为:.14、【解析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【点睛】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.15、34【解析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.16、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m=4;(2)m>6或m<-4【解析】(1)分别求得集合A、B,根据交集的结果,列出方程,即可得答案.(2)根据题意可得p是﹁q的充分条件,可得,先求得,根据包含关系,列出不等式,即可得答案.【详解】解:(1)由题意得:A={x|-1≤x≤3,x∈R},B={x|m-3≤x≤m+3,x∈R,m∈R},∵A∩B={x|1≤x≤3,x∈R},∴,解得m=4(2)∵﹁q是p的必要条件,∴p是﹁q的充分条件,∴,又,∴或,解得m>6或m<-418、(1)(2)【解析】(1)先化简集合A,再去求;(2)结合函数的图象,可以简单快捷地得到关于实数a的不等式组,即可求得实数a的取值范围.【小问1详解】当时,,又,故【小问2详解】由是的充分条件,得,即任意,有成立函数的图象是开口向上的抛物线,故,解得,所以a的取值范围为19、(1)(2)【解析】(1)首先求出集合,再对与两种情况讨论,分别得到不等式,解得即可;(2)依题意可得集合,分与两种情况讨论,分别到不等式,解得即可;【小问1详解】解:由得解,所以,又若,分类讨论:当,即解得,满足题意;当,即,解得时,若满足,则必有或;解得.综上,若,则实数t的取值范围为.【小问2详解】解:由“”是“”的必要不充分条件,则集合,若,即,解得,若,即,即,则必有,解得,综上可得,,综上所述,当“”是“”的必要不充分条件时,即为所求20、(1)见解析;(2)见解析;(3)【解析】利用定义证明即可;把看成整体,研究对勾函数的单调性以及利用复合函数的单调性的性质得到该函数的单调性;对于任意的,总存在,使得可转化成的值域为的值域的子集,建立关系式,解之即可【详解】证明::设,,且,,,,,当时,即,当时,即,当时,,即,此时函数为减函数,当时,,即,此时函数为增函数,故在上是减函数,在上是增函数;当时,,,设,则,,由可知在上是减函数,在上是增函数;,,即,,即在上是减函数,在上是增函数;由于减函数,故,又由(2)得由题意,的值域为的值域的子集,从而有,解得【点睛】本题主要考查定义法证明函数单调性,利用单调性求函数的值域,以及函数恒成立问题,同时考查了转化的思想和运算求解的能力,是中档题21、(1)见解析(2)【解析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可【详解】(1)证明:∵底面ABCD是正方形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论