山西省朔州市怀仁第一中学2026届数学高二上期末联考模拟试题含解析_第1页
山西省朔州市怀仁第一中学2026届数学高二上期末联考模拟试题含解析_第2页
山西省朔州市怀仁第一中学2026届数学高二上期末联考模拟试题含解析_第3页
山西省朔州市怀仁第一中学2026届数学高二上期末联考模拟试题含解析_第4页
山西省朔州市怀仁第一中学2026届数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市怀仁第一中学2026届数学高二上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.2.已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.① B.①②C.③ D.①③3.设函数,则和的值分别为()A.、 B.、C.、 D.、4.圆的圆心坐标和半径分别为()A.和 B.和C.和 D.和5.已知函数的定义域为,若,则()A. B.C. D.6.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.B.C.D.7.直线的倾斜角的大小为A. B.C. D.8.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希腊西西里岛叙拉古(今意大利西西里岛上),伟大的古希腊数学家、物理学家,与高斯、牛顿并称为世界三大数学家.有一类三角形叫做阿基米德三角形(过抛物线的弦与过弦端点的两切线所围成的三角形),他利用“通近法”得到抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的(即右图中阴影部分面积等于面积的).若抛物线方程为,且直线与抛物线围成封闭图形的面积为6,则()A.1 B.2C. D.39.在中,若,则()A.150° B.120°C.60° D.30°10.在各项都为正数的数列中,首项为数列的前项和,且,则()A. B.C. D.11.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.12.命题“,”的否定是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.14.已知A(1,3),B(5,-2),点P在x轴上,则使|AP|-|BP|取最大值的点P的坐标是________15.一条光线从点射出,经x轴反射,其反射光线所在直线与圆相切,则反射光线所在的直线方程为____.16.关于曲线,给出下列三个结论:①曲线关于原点对称,但不关于轴、轴对称;②曲线恰好经过4个整点(即横、纵坐标均为整数的点);③曲线上任意一点到原点的距离都不大于.其中,正确结论的序号是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是菱形,平面,,,分别为,的中点(1)证明:平面;(2)证明:平面18.(12分)已知公差大于零的等差数列的前项和为,且满足,,(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数;19.(12分)阿基米德(公元前287年---公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系中,椭圆的面积等于,且椭圆的焦距为.(1)求椭圆的标准方程;(2)点是轴上的定点,直线与椭圆交于不同的两点,已知A关于轴的对称点为,点关于原点的对称点为,已知三点共线,试探究直线是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点21.(12分)已知定圆,过的一条动直线与圆相交于、两点,(1)当与定直线垂直时,求出与的交点的坐标,并证明过圆心;(2)当时,求直线的方程22.(10分)已知椭圆.离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求的面积是否为定值,并说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A2、D【解析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①正确,当时,曲线的方程化为,此时当时,曲线的方程化为,此时所以曲线图形是两个抛物线的部分组成的,不是椭圆,故②不正确.当,时,设,设,则,(当且仅当或时等号成立)所以在第一象限内,椭圆的图形在曲线的上方.根据曲线和椭圆的的对称性可得椭圆的图形在曲线的外部(四个顶点在曲线上)所以曲线围成区域的面积小于椭圆围成区域的面积,故③正确.故选:D3、D【解析】求得,即可求得、的值.【详解】,则,则,故,.故选:D.4、C【解析】利用圆的一般方程的圆心和半径公式,即得解【详解】可化为,由圆心为,半径,易知圆心的坐标为,半径为.故选:C5、D【解析】利用导数的定义可求得的值.【详解】由导数的定义可得.故选:D.6、D【解析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案【详解】由函数图象知,此三次函数在上处与直线相切,在点处与相切,下研究四个选项中函数在两点处的切线A:,将0代入,此时导数为,与点处切线斜率为矛盾,故A错误B:,将0代入,此时导数为,不为,故B错误;C:,将2代入,此时导数为,与点处切线斜率为3矛盾,故C错误;D:,将0,2代入,解得此时切线的斜率分别是,3,符合题意,故D正确;故选:D.7、A【解析】考点:直线的倾斜角专题:计算题分析:因为直线的斜率是倾斜角的正切值,所以欲求直线的倾斜角,只需求出直线的斜率即可,把直线化为斜截式,可得斜率,问题得解解答:解:∵x-y+1=0可化为y=x+,∴斜率k=设倾斜角为θ,则tanθ=k=,θ∈[0,π)∴θ=故选A点评:本题主要考查了直线的倾斜角与斜率之间的关系,属于直线方程的基础题型,需要学生对基础知识熟练掌握8、D【解析】根据题目所给条件可得阿基米德三角形的面积,再利用三角形面积公式即可求解.【详解】由题意可知,当过焦点的弦垂直于x轴时,即时,,即,故选:D9、C【解析】根据正弦定理将化为边之间的关系,再结合余弦定理可得答案.【详解】若,则根据正弦定理得:,即,而,故,故选:C.10、C【解析】当时,,故可以得到,因为,进而得到,所以是等比数列,进而求出【详解】由,得,得,又数列各项均为正数,且,∴,∴,即∴数列是首项,公比的等比数列,其前项和,得,故选:C.11、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.12、D【解析】根据含一个量词的命题的否定方法:修改量词,否定结论,直接得到结果.【详解】命题“,”的否定是“,”.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知,由中位线定理可得,设可得,联立方程可解得(舍),点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.14、【解析】首先求得点A关于x轴的对称点,然后数形结合结合直线方程求解点P的坐标即可.【详解】点A(1,3)关于x轴的对称点为A′(1,-3),如图所示,连接A′B并延长交x轴于点P,即为所求直线A′B的方程是y+3=(x-1),即.令y=0,得x=13则点P的坐标是.【点睛】本题主要考查直线方程的应用,最值问题的求解,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.15、或【解析】点关于轴的对称点为,即反射光线过点,分别讨论反射光线的斜率存在与不存在的情况,进而求解即可【详解】点关于轴的对称点为,(1)设反射光线的斜率为,则反射光线的方程为,即,因为反射光线与圆相切,所以圆心到反射光线的距离,即,解得,所以反射光线方程为:;(2)当不存在时,反射光线,此时,也与圆相切,故答案为:或【点睛】本题考查直线在光学中的应用,考查圆的切线方程16、①③【解析】设为曲线上任意一点,判断、、是否满足曲线方程即可判断①;求出曲线过的整点即可判断②;由条件利用即可得,即可判断③;即可得解.【详解】设为曲线上任意一点,则,设点关于原点、轴、轴的对称点分别为、、,因为;;;所以点在曲线上,点、点不在曲线上,所以曲线关于原点对称,但不关于轴、轴对称,故①正确;当时,;当,.此外,当时,;当时,.故曲线过整点,,,,,,故②错误;又,所以恒成立,由可得,当且仅当时等号成立,所以,所以曲线上任一点到原点的距离,故③正确.故答案为:①③.【点睛】本题考查了与曲线方程有关的命题真假判断,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)取中点,结合三角形中位线性质可证得四边形为平行四边形,由此得到,由线面平行判定定理可证得结论;(2)利用菱形特点和线面垂直的性质可证得,,由线面垂直的判定定理可证得结论.【详解】(1)取中点,连接,分别为中点,,四边形为菱形,为中点,,,四边形为平行四边形,,又平面,平面,平面.(2)连接,四边形为菱形,,为等边三角形,又为中点,,平面,平面,,又平面,,平面.18、(1)(2)【解析】(1)利用等差数列的性质可得,联立方程可得,代入等差数列的通项公式可求;(2)代入等差数列的前和公式可求,进一步可得,然后结合等差数列的定义可得,从而可求.【详解】(1)为等差数列,,又是方程的两个根,(2)由(1)可知,为等差数列,舍去)当时,为等差数列,满足要求【点睛】本题主要考查了等差数列的定义、性质、通项公式、前项和公式的综合运用,属于中档题.19、(1);(2)直线恒过定点.【解析】(1)根据椭圆的焦距可求出,由椭圆的面积等于得,求出,即可求出椭圆的标准方程;(2)设直线,,进而写出为,两点坐标,将直线与椭圆的方程联立,根据韦达定理求,,由三点共线可知,将,代入并化简,得到的关系式,分析可知经过的定点坐标.【详解】(1)椭圆的面积等于,,,椭圆的焦距为,,,椭圆方程为(2)设直线,,则,,三点共线,得,直线与椭圆交于两点,,,,由,得,,,代入中,,,当,直线方程为,则重合,不符合题意;当时,直线,所以直线恒过定点.20、(1);(2)证明见解析.【解析】(1)设椭圆的方程为代入点的坐标求出椭圆的方程,再利用点差法求解;(2)由题得直线的斜率存在,设直线的方程为,联立直线和椭圆的方程得韦达定理,根据和韦达定理得到,即得证.【小问1详解】解:由题设椭圆的方程为因为椭圆经过点,所以所以椭圆的方程为.设,所以,所以,由题得,所以,所以,所以,所以直线的斜率为.【小问2详解】解:由题得当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设直线的方程为,联立方程组y=kx+nx24所以,解得①,设,,,,则②,因为,则,,,又,,所以③,由②③可得(舍或满足条件①,此时直线的方程为,故直线过定点21、(1),证明见解析;(2)或.【解析】(1)根据题意可设直线的方程为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论