山东省济南市2026届高一数学第一学期期末经典试题含解析_第1页
山东省济南市2026届高一数学第一学期期末经典试题含解析_第2页
山东省济南市2026届高一数学第一学期期末经典试题含解析_第3页
山东省济南市2026届高一数学第一学期期末经典试题含解析_第4页
山东省济南市2026届高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市2026届高一数学第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以下四组数中大小比较正确的是()A. B.C. D.2.“,”的否定是()A., B.,C., D.,3.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}4.“”是“关于的方程有实数根”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.“ω=2”是“π为函数的最小正周期”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是()A. B.C. D.7.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)8.如图,四棱锥的底面为正方形,底面,则下列结论中不正确的是A.B.平面C.平面平面D.与所成的角等于与所成的角9.设函数则A.1 B.4C.5 D.910.设函数,A3 B.6C.9 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=sinx-2cosx+的一个零点是,则tan=_________.12.已知函数,现有如下几个命题:①该函数为偶函数;

②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______13.若函数与函数的最小正周期相同,则实数______14.若函数在区间[2,3]上的最大值比最小值大,则__________.15.若函数是定义在上的奇函数,且满足,当时,,则__________.16.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的部分图象如图.(1)求函数的解析式;(2)求函数在上的单调增区间.18.已知函数,不等式解集为,设(1)若存在,使不等式成立,求实数的取值范围;(2)若方程有三个不同的实数解,求实数的取值范围19.已知,,,.当k为何值时:(1);(2).20.如图,点,,在函数的图象上(1)求函数的解析式;(2)若函数图象上的两点,满足,,求四边形OMQN面积的最大值21.已知函数是定义在上的奇函数,且时,.(1)求函数的解析式;(2)若任意恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】结合指数函数、对数函数、幂函数性质即可求解详解】对A,,故,错误;对B,在第一象限为增函数,故,错误;对C,为增函数,故,正确;对D,,,故,错误;故选:C【点睛】本题考查根据指数函数,对数函数,幂函数性质比较大小,属于基础题2、C【解析】利用含有一个量词的命题的否定的定义求解即可【详解】“,”的否定是“,,”故选:C3、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解4、A【解析】根据给定条件利用充分条件、必要条件的定义直接判断作答.【详解】当时,方程的实数根为,当时,方程有实数根,则,解得,则有且,因此,关于的方程有实数根等价于,所以“”是“关于的方程有实数根”的充分而不必要条件.故选:A5、A【解析】直接利用正弦型函数的性质的应用,充分条件和必要条件的应用判断A、B、C、D的结论【详解】解:当“ω=2”时,“函数f(x)=sin(2x﹣)的最小正周期为π”当函数f(x)=sin(ωx﹣)的最小正周期为π”,故ω=±2,故“ω=2”是“π为函数的最小正周期”的充分不必要条件;故选:A6、D【解析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可.【详解】解:因为关于x的方程恰有两个不同的实数解,所以函数与图像有两个交点,作出函数图像,如图,所以时,函数与图像有两个交点,所以实数m的取值范围是故选:D7、C【解析】由题意分别计算出集合的补集和集合,然后计算出结果.【详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C8、D【解析】结合直线与平面垂直判定和性质,结合直线与平面平行的判定,即可【详解】A选项,可知可知,故,正确;B选项,AB平行CD,故正确;C选项,,故平面平面,正确;D选项,AB与SC所成的角为,而DC与SA所成的角为,故错误,故选D【点睛】考查了直线与平面垂直的判定和性质,考查了直线与平面平行的判定,考查了异面直线所成角,难度中等9、C【解析】根据题意,由函数的解析式求出与的值,相加即可得答案【详解】根据题意,函数,则,又由,则,则;故选C【点睛】本题考查对数的运算,及函数求值问题,其中解答中熟记对数的运算,以及合理利用分段函数的解析式求解是解答的关键,着重考查了推理与计算能力,属于基础题10、C【解析】.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、##-0.5【解析】应用辅助角公式有且,由正弦型函数的性质可得,,再应用诱导公式求.【详解】由题设,,,令,可得,即,,所以,,则.故答案为:12、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.13、【解析】求出两个函数的周期,利用周期相等,推出a的值【详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【点睛】本题是基础题,考查三角函数的周期的求法,考查计算能力14、【解析】函数在上单调递增,∴解得:故答案为15、##【解析】由,可得函数是以为一个周期的周期函数,再根据函数的周期性和奇偶性将所求转化为已知区间即可得解.【详解】解:因为,所以函数是以为一个周期的周期函数,所以,又因为函数是定义在上的奇函数,所以,所以.故答案为:.16、9【解析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式求解.【详解】因为扇形的弧长是6,圆心角为2,所以,所以扇形的面积为,故答案为:9.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)和.【解析】(1)由图知:且可求,再由,结合已知求,写出解析式即可.(2)由正弦函数的单调性,知上递增,再结合给定区间,讨论值确定其增区间.【详解】(1)由图知:且,∴.又,即,而,∴.综上,.(2)∵,∴.当时,;当时,,又,∴函数在上的单调增区间为和.18、(1);(2)【解析】(1)由不等式的解集为可知是方程的两个根,即可求出,根据的单调性求出其在的最大值,即可得出m的范围;(2)方程可化为,令,则有两个不同的实数解,,根据函数性质可列出不等式求解.【详解】(1)∵不等式的解集为∴,是方程的两个根∴,解得.∴则∴存在,使不等式成立,等价于在上有解,而在时单调递增,∴∴的取值范围为(2)原方程可化为令,则,则有两个不同的实数解,,其中,,或,记,则①,解得或②,不等式组②无实数解∴实数的取值范围为【点睛】本题考查一元二次不等式的解集与方程的根的关系,考查函数的单调性,考查利用函数性质解决方程解的情况,属于较难题.19、(1)或2;(2)【解析】(1)根据向量共线坐标公式列方程即可求解;(2)根据向量垂直坐标公式列方程即可求解【详解】(1)若,有,整理为解得或2;(2)若,有,整理为解得:20、(1)(2)【解析】(1)由图可求出,从而求得,由图可知函数处取得最小值,从而可求出的值,再将点的坐标代入函数中可求出,进而可求出函数的解析式,(2)由题意求得所以,,而四边形OMQN的面积为S,则,代入化简利用三角函数的性质可求得结果【小问1详解】由图可知的周期T满足,得又因为,所以,解得又在处取得最小值,即,得,所以,,解得,因为,所以.由,得,所以综上,【小问2详解】当时,,所以.由知此时记四边形OMQN的面积为S,则又因为,所以,所以当,即时,取得最大值所以四边形OMQN面积的最大值是21、(1);(2).【解析】(1)由奇函数的性质可得出,设,由奇函数的性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论