安徽省舒城干汊河中学2026届数学高一上期末检测模拟试题含解析_第1页
安徽省舒城干汊河中学2026届数学高一上期末检测模拟试题含解析_第2页
安徽省舒城干汊河中学2026届数学高一上期末检测模拟试题含解析_第3页
安徽省舒城干汊河中学2026届数学高一上期末检测模拟试题含解析_第4页
安徽省舒城干汊河中学2026届数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省舒城干汊河中学2026届数学高一上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.2.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件3.已知函数,若对任意,总存在,使得不等式都恒成立,则实数的取值范围为()A. B.C. D.4.已知点P(cosα,sinα),Q(cosβ,sinβ),则的最大值是()A. B.2C.4 D.5.已知函数在区间上是单调增函数,则实数的取值范围为()A. B.C. D.6.已知函数是奇函数,则A. B.C. D.7.若角(0≤≤2π)的终边过点,则=(

)A. B.C. D.8.下列每组函数是同一函数的是A.f(x)=x-1, B.f(x)=|x-3|,C.,g(x)=x+2 D.,9.设函数,其中,,,都是非零常数,且满足,则()A. B.C. D.10.从800件产品中抽取6件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数开始往右读数(随机数表第7行至第9行的数如下),则抽取的6件产品的编号的75%分位数是()……844217533157245506887704744767217633502583921206766301637859169556671169105671751286735807443952387933211234297864560782524207443815510013429966027954A.105 B.556C.671 D.169二、填空题:本大题共6小题,每小题5分,共30分。11.点分别为圆与圆上的动点,点在直线上运动,则的最小值为__________12.若圆锥的侧面展开图是圆心角为的扇形,则该圆锥的侧面积与底面积之比为___________.13.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)14.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________15.已知角的终边经过点,则__16.写出一个定义域为,周期为的偶函数________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示(1)求的解析式;(2)将图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图象向右平移个单位长度,得到函数的图象.若在区间上不单调,求的取值范围18.有一种新型的洗衣液,去污速度特别快,已知每投放个(,且)单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用.(1)若只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,求的值;(2)若只投放一次个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,则在第分钟时洗衣液是否还能起到有效去污的作用?请说明理由.19.如图,四棱锥中,底面为矩形,面,为的中点(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离20.已知函数(1)当时,求的取值范围;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数m的取值范围21.已知为定义在上的奇函数,当时,函数解析式为.(1)求的值,并求出在上的解析式;(2)求在上的最值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.2、D【解析】根据题意“非有志者不能至也”可知到达“奇伟、瑰怪,非常之观”必是有志之士,故“有志”是到达“奇伟、瑰怪,非常之观”的必要条件,故选D.3、D【解析】探讨函数性质,求出最大值,再借助关于a函数单调性列式计算作答.【详解】依题意,,则是上的奇函数,当时,,在上单调递增,在上单调递减,则,由奇函数性质知,函数在上的最大值是,依题意,存在,,令,显然是一次型函数,因此,或,解得或,所以实数的取值范围为.故选:D4、B【解析】,则,则的最大值是2,故选B.5、B【解析】根据二次函数的图象与性质,可知区间在对称轴的右面,即,即可求得答案.【详解】函数为对称轴开口向上的二次函数,在区间上是单调增函数,区间在对称轴的右面,即,实数的取值范围为.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.6、A【解析】由函数的奇偶性求出,进而求得答案【详解】因为是奇函数,所以,即,则,故.【点睛】本题考查函数的奇偶性,属于基础题7、D【解析】由题意可得:,由可知点位于第一象限,则.据此可得:.本题选择D选项.8、B【解析】分析:根据题意,先看了个函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.详解:对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选B.点睛:本题主要考查了判断两个函数是否是同一个函数,其中解答中考查了函数的定义域的计算和函数的三要素的应用,着重考查了推理与计算能力,属于基础题.9、C【解析】代入后根据诱导公式即可求出答案【详解】解:由题,∴,∴,故选:C【点睛】本题主要考查三角函数的诱导公式的应用,属于基础题10、C【解析】由随机表及编号规则确定抽取的6件产品编号,再从小到大排序,应用百分位数的求法求75%分位数.【详解】由题设,依次读取的编号为,根据编号规则易知:抽取的6件产品编号为,所以将它们从小到大排序为,故,所以75%分位数为.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】根据题意,算出圆M关于直线对称的圆方程为.当点P位于线段上时,线段AB的长就是的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出的最小值.【详解】设圆是圆关于直线对称的圆,

可得,圆方程为,

可得当点C位于线段上时,线段AB长是圆N与圆上两个动点之间的距离最小值,

此时的最小值为AB,

,圆的半径,

,

可得因此的最小值为7,

故答案为7.点睛:圆中的最值问题往往转化动点与圆心的距离问题,本题中可以转化为,再利用对称性求出的最小值即可12、【解析】设圆锥的底面半径为r,母线长为l,根据圆锥的侧面展开图是圆心角为的扇形,有,即,然后分别求得侧面积和底面积即可.【详解】设圆锥的底面半径为r,母线长为l,由题意得:,即,所以其侧面积是,底面积是,所以该圆锥的侧面积与底面积之比为故答案为:13、【解析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.14、【解析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:15、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.16、(答案不唯一)【解析】结合定义域与周期与奇偶性,写出符合要求的三角函数即可.【详解】满足定义域为R,最小正周期,且为偶函数,符合要求.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用最值求出,根据得出,再由特殊值求出即可求解.(2)根据三角函数的图象变换得出,再由正弦函数在上单调即可求解.【详解】解:(1)由图可知,最小正周期,所以因为,所以,,,又,所以,故(2)由题可知,当时,因为在区间上不单调,所以,解得故的取值范围为18、(1);(2)分钟;(3)见详解.【解析】(1)由只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,根据已知可得,,代入可求出的值;(2)由只投放一次个单位的洗衣液,可得,分、两种情况解不等式即可求解;(3)令,由题意求出此时的值并与比较大小即可.【详解】(1)因为,当两分钟时水中洗衣液的浓度为克/升时,可得,即,解得;(2)因为,所以,当时,,将两式联立解之得;当时,,将两式联立解之得,综上可得,所以若只投放一次个单位的洗衣液,则有效去污时间可达分钟;(3)当时,由题意,因为,所以在第分钟时洗衣液能起到有效去污的作用.【点睛】本题主要考查分段函数模型的选择和应用,其中解答本题的关键是正确理解水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用,属中等难度题.19、(1)证明见解析(2)到平面的距离为【解析】(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离20、(1)(2)【解析】(1)首先利用三角恒等变换公式化简函数解析式,再根据的取值范围,求出的取值范围,最后根据正弦函数的性质计算可得;(2)依题意可得,再由(1)及正弦函数的性质计算可得;【小问1详解】解:因为即∵,∴,∴,∴,故的取值范围为【小问2详解】解:∵,∴由(1)知,∵有两个不同的实数根,因为在上单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论