江西省六校2026届高一数学第一学期期末质量检测试题含解析_第1页
江西省六校2026届高一数学第一学期期末质量检测试题含解析_第2页
江西省六校2026届高一数学第一学期期末质量检测试题含解析_第3页
江西省六校2026届高一数学第一学期期末质量检测试题含解析_第4页
江西省六校2026届高一数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省六校2026届高一数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?(参考数据:)()A.6 B.7C.8 D.92.已知,则的值为()A. B.C.1 D.23.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.84.函数f(x)=x2-3x-4的零点是()A. B.C. D.5.设集合A={3,4,5},B={3,6},P={x|xA},Q={x|xB},则PQ=A.{3}B.{3,4,5,6}C.{{3}}D.{{3},}6.定义在上的奇函数,当时,,则不等式的解集为()A. B.C. D.7.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.C. D.8.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.9.设函数的部分图象如图所示,若,且,则()A. B.C. D.10.函数的图象大致为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若,则________12.已知为角终边上一点,且,则______13.若,则实数的值为______.14.某时钟的秒针端点到中心点的距离为6cm,秒针均匀地绕点旋转,当时间时,点与钟面上标12的点重合,将,两点的距离表示成的函数,则_______,其中15.函数的图象恒过定点P,P在幂函数的图象上,则___________.16.向量与,则向量在方向上的投影为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=a+是奇函数,a∈R是常数(Ⅰ)试确定a的值;(Ⅱ)用定义证明函数f(x)在区间(0,+∞)上是减函数;(Ⅲ)若f(2t+1)+f(1-t)<0成立,求t的取值范围18.已知集合A为函数的定义域,集合B是不等式的解集(1)时,求;(2)若,求实数a的取值范围19.已知集合,(1)分别求,;(2)已知,若,求实数的取值集合20.已知函数.求函数的值域21.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入万元安装了一台新设备,并立即进行生产,预计使用该设备前年的材料费、维修费、人工工资等共为()万元,每年的销售收入万元.设使用该设备前年的总盈利额为万元.(1)写出关于的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.【详解】解:设经过个小时才能驾驶,则,即,由于在定义域上单调递减,,∴他至少经过11小时才能驾驶.则他次日上午最早7点开车才不构成酒后驾车故选:B2、A【解析】先使用诱导公式,将要求的式子进行化简,然后再将带入即可完成求解.【详解】由已知使用诱导公式化简得:,将代入即.故选:A.3、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题4、D【解析】直接利用函数零点定义,解即可.【详解】由,解得或,函数零点是.故选:.【点睛】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.5、D【解析】集合P={x|x⊆A}表示集合A的子集构成的集合,故P={∅,{3},{4},{5},{3,4},{3,5},{4,5},{3,4,5}},同样Q={∅,{3},{6},{3,6}}.∴P∩Q={{3},Φ};故选D.6、D【解析】当时,为单调增函数,且,则的解集为,再结合为奇函数,可得答案【详解】当时,,所以在上单调递增,因为,所以当时,等价于,即,因为是定义在上的奇函数,所以时,在上单调递增,且,所以等价于,即,所以不等式的解集为故选:D7、A【解析】正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积8、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题9、C【解析】根据图像求出,由得到,代入即可求解.【详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C10、A【解析】由函数的奇偶性质可知函数为偶函数,再结合时函数的符号即可得答案.【详解】解:由题知函数的定义域为,关于原点对称,,所以函数为偶函数,其图像关于轴对称,故排除B,D,当时,,故排除C,得A为正确选项.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】由已知条件可得,构造函数,求导后可判断函数在上单调递增,再由,得,从而可求得答案【详解】由题意得,,令,则,所以在上单调递增,因为,所以,所以,故答案为:112、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.13、【解析】由指数式与对数式的互化公式求解即可【详解】因为,所以,故答案为:14、【解析】设函数解析式为,由题意将、代入求出参数值,即可得解析式.【详解】设,由题意知:,当时,,则,,令得;当时,,则,,令得,所以.故答案为:.15、64【解析】由题意可求得点,求出幂函数的解析式,从而求得.【详解】令,则,故点;设幂函数,则,则;故;故答案为:64.16、【解析】在方向上的投影为考点:向量的投影三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)a=1;(Ⅱ)见解析;(Ⅲ)-2<t<-或t>1.【解析】(Ⅰ)根据恒成立可得;(Ⅱ)按照设点、作差、变形、判号、下结论,五个步骤证明;(Ⅲ)利用奇偶性、单调性转化不等式,从而求解【详解】(Ⅰ)∵f(x)+f(-x)=2a++=2a-=2a-2=0对R恒成立,∴a=1(Ⅱ)设0<x1<x2<+∞,∵f(x2)-f(x1)=-=.

(*)∵函数y=2x是增函数,又0<x1<x2,∴>0,而-1>0,-1>0,∴(*)式小于0∴f(x2)<f(x1),即f(x)是区间(0,+∞)上是减函数(Ⅲ)∵f(x)是奇函数,∴f(2t+1)+f(1-t)<0可化为f(2t+1)<f(t-1)由(Ⅱ)可知f(x)在区间(-∞,0)和(0,+∞)上都是减函数当2t+1>0,t-1>0时,f(2t+1)<f(t-1)化为2t+1>t-1,解得t>1;当2t+1<0,t-1<0时,f(2t+1)<f(t-1)化为2t+1>t-1,解得-2<t<-;当2t+1<0,t-1>0时,f(2t+1)<0<f(t-1)显然成立,无解;当2t+10,t-10时,f(2t+1)0,f(t-1),f(2t+1)<f(t-1)显然不成立,综上,f(2t+1)+f(1-t)<0成立时t的取值范围是-2<t<-或t>1【点睛】本题考查了偶函数定义,单调性的证明,偶函数的应用及单调性的应用,等价转化思想,属中档题18、(1)(2)【解析】(1)由函数定义域求A,由不等式求B,按照集合交并补运算规则即可;(2)由A推出B的范围,由于a的不确定性,可以将不等式转换,用基本不等式解决.【小问1详解】由,解得:,即;当时,由得:或,∴,∴,∴;【小问2详解】由知:,即对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,即实数a的取值范围为;综上:,.19、(1)(2)【解析】(1)两集合的交集为两集合的相同的元素构成的集合,两集合的并集为两集合所有的元素构成的集合;(2)由两集合的子集关系得到两集合边界值的大小关系,从而解不等式得到的取值范围试题解析:(1),(2)由可得考点:集合运算及集合的子集关系20、【解析】将化为,分和分别应用均值不等式可得答案.【详解】解:,当时,,当且仅当,即时取等号;当时,,当且仅当,即时取等号综上所述,的值域为21、(1),3年;(2)第二种方案更合适,理由见解析.【解析】(1)利用年的销售收入减去成本,求得的表达式,由,解一元二次不等式求得从第年开始盈利.(2)方案一:利用配方法求得总盈利额的最大值,进而求得总利润;方案二:利用基本不等式求得时年平均利润

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论