版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
郑州市2026届数学高一上期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义域是()A. B.C. D.(0,4)2.集合,,将集合A,B分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A. B.C. D.3.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则4.的值为A. B.C. D.5.设,,,则a、b、c的大小关系是A. B.C. D.6.已知,,则在方向上的投影为()A. B.C. D.7.若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的是()①logax2=2logax;②logax2=2loga|x|;③loga(xy)=logax+logay;④loga(xy)=loga|x|+loga|y|.A.②④ B.①③C.①④ D.②③8.已知集合,下列选项正确的是()A. B.C. D.9.下列函数中,是偶函数且值域为的是()A. B.C. D.10.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣3二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的最大值为3,最小值为1,则函数的值域为_________.12.已知,则___________13.已知幂函数的图象过点(2,),则___________14.若正数,满足,则________.15.三条直线两两相交,它们可以确定的平面有______个.16.在中,已知是延长线上一点,若,点为线段的中点,,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简(2)若是第三象限角,且,求的值18.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.19.计算题20.如图,建造一个容积为,深为,宽为的长方体无盖水池,如果池底的造价为元/,池壁的造价为元/,求水池的总造价.21.已知点,,.(1)若,求的值;(2)若,其中为坐标原点,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据对数函数的单调性,结合二次根式的性质进行求解即可.【详解】由,故选:C2、B【解析】首先求出集合,再结合韦恩图及交集、并集、补集的定义计算可得;【详解】解:∵,,∴,则,,选项A中阴影部分表示的集合为,即,故A错误;选项B中阴影部分表示的集合由属于A但不属于B的元素构成,即,故B正确;选项C中阴影部分表示的集合由属于B但不属于A的元素构成,即,有1个元素,故C错误;选项D中阴影部分表示的集合由属于但不属于的元素构成,即,故D错误故选:B3、C【解析】分析】利用不等式性质逐一判断即可.【详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【点睛】本题考查了利用不等式性质判断大小,属于基础题.4、B【解析】.故选B.5、D【解析】根据指数函数与对数函数性质知,,,可比较大小,【详解】解:,,;故选D【点睛】在比较幂或对数大小时,一般利用指数函数或对数函数的单调性,有时还需要借助中间值与中间值比较大小,如0,1等等6、A【解析】利用向量数量积的几何意义以及向量数量积的坐标表示即可求解.【详解】,,在方向上的投影为:.故选:A【点睛】本题考查了向量数量积的几何意义以及向量数量积的坐标表示,考查了基本运算求解能力,属于基础题.7、B【解析】对于①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②④根据运算性质可得均正确.【详解】∵xy>0,∴①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②logax2=2loga|x|,④loga(xy)=loga|x|+loga|y|,根据对数运算性质得两个都正确;故选:B.8、B【解析】由已知集合,判断选项中的集合或元素与集合A的关系即可.【详解】由题设,且,所以B正确,A、C、D错误.故选:B9、D【解析】分别判断每个选项函数的奇偶性和值域即可.【详解】对A,,即值域为,故A错误;对B,的定义域为,定义域不关于原点对称,不是偶函数,故B错误;对C,的定义域为,定义域不关于原点对称,不是偶函数,故C错误;对D,的定义域为,,故是偶函数,且,即值域为,故D正确.故选:D.10、D【解析】等价于二次函数的最大值不小于零,即可求出答案.【详解】设,,使得不等式成立,须,即,或,解得.故选:D【点睛】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数性质,列方程求出,得到,进而得到,利用换元法,即可求出的值域【详解】根据三角函数性质,的最大值为,最小值为,解得,则函数,则函数,,令,则,令,由得,,所以,的值域为故答案为:【点睛】关键点睛:解题关键在于求出后,利用换元法得出,,进而求出的范围,即可求出所求函数的值域,难度属于中档题12、2【解析】将齐次式弦化切即可求解.【详解】解:因为,所以,故答案为:2.13、【解析】由幂函数所过的点求的解析式,进而求即可.【详解】由题设,若,则,可得,∴,故.故答案为:14、108【解析】设,反解,结合指数运算和对数运算,即可求得结果.【详解】可设,则,,;所以.故答案为:108.15、1或3【解析】利用平面的基本性质及推论即可求出.【详解】设三条直线为,不妨设直线,故直线与确定一个平面,(1)若直线在平面内,则直线确定一个平面;(2)若直线不在平面内,则直线确定三个平面;故答案为:1或3;16、【解析】通过利用向量的三角形法则,以及向量共线,代入化简即可得出【详解】解:∵()(),∴λ,∴故答案为【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)根据诱导公式化简即得,(2)先根据诱导公式得,再根据平方关系求,即得的值.详解:(1).(2)由,得:∵是第三象限角,∴则点睛:本题考查诱导公式以及同角三角函数关系,考查基本求解能力.18、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可得.因为当时,有,所以R单调递增.(3)由(1)可知,令,则,因为是增函数,且,所以.因为在上的最小值为,所以在上的最小值为.因为,所以当时,,解得或(舍去);当时,,不合题意,舍去.综上可知,.【点睛】本题考查函数的奇偶性应用和单调性的证明,考查复合函数的最值,用换元方法,将问题化归为二次函数函数的最值,属于较难题.19、2【解析】直接利用指数幂的运算法则求解即可,化简过程注意避免出现计算错误.【详解】化简.【点睛】本题主要考查指数幂的运算,属于中档题.指数幂运算的四个原则:(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(化简过程中一定要注意等价性,特别注意开偶次方根时函数的定义域)20、2880元【解析】先求出水池的长,再求出底面积与侧面积,利用池底的造价为120元/m2,池壁的造价为80元/m2,即可求水池的总造价【详解】分别设长、宽、高为am,bm,hm;水池的总造价为y元,则V=abh=16,h=2,b=2,∴a=4m,∴S底=4×2=8m2,S侧=2×(2+4)×2=24m2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 勾选上方协议书页面
- 廊道管护权移交协议书
- 发起人协议书例子
- 2025-2030人工智能绘画创作行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030人工智能算法优化方向研究与产业应用前景
- 2025-2030人工智能服务行业市场供需分析及投资评估规划分析研究报告
- 2025-2030人工智能学习行业市场供需现状分析投资机遇规划风险管理发展研究报告
- 2025-2030人工智能医疗诊断系统的市场现状供需分析及投资评估规划分析研究报告
- 2025-2030人工智能医疗决策支持系统研发与临床应用情况考察
- 2025-2030交通运输能源行业市场供需分析及投资布局规划分析研究报告
- 2025 AHA 心肺复苏与心血管急救指南 - 第6部分:儿童基本生命支持解读
- 《基础护理学(第七版)》考前强化模拟练习试题库500题(含答案)
- 《水电工程水生生态调查与评价技术规范》(NB-T 10079-2018)
- 闵福德的中译英历程和译介理念
- 化工基础安全知识培训资料全人力资源
- 部编版语文六年级上册二类字词语
- JJG 945-2010微量氧分析仪
- “多规合一”实用性村庄规划质检软件建设方案
- GB/T 16770.1-2008整体硬质合金直柄立铣刀第1部分:型式与尺寸
- 义务教育体育与健康课程标准(2022年版)
- 湖南省乡镇卫生院街道社区卫生服务中心地址医疗机构名单目录
评论
0/150
提交评论