版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省孝感一中、应城一中等五校数学高一上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,网格纸的各小格都是正方形(边长为1),粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体的表面积为()A. B.C. D.2.设,,,则A. B.C. D.3.在正六棱柱任意两个顶点的连线中与棱AB平行的条数为()A.2 B.3C.4 D.54.已知向量,且,则A. B.C. D.5.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.6.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角α的终边在单位圆中的位置(阴影部分)是()A. B.C. D.7.函数的最小正周期是A. B.C. D.8.在梯形中,,,.将梯形绕所在直线旋转一周而形成的曲面所围成的几何体的体积为A. B.C. D.9.已知,,,则()A. B.C. D.10.已知角的终边上有一点的坐标是,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为________.12.在单位圆中,已知角的终边与单位圆的交点为,则______13.将函数y=sin2x+π4的图象上各点的纵坐标不变,横坐标伸长到原来的14.已知,且,则______.15.已知一组数据的平均数,方差,则另外一组数据的平均数为___________,方差为___________.16.函数在上单调递增,且为奇函数,若,则满足的的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.中学阶段是学生身体发育重要的阶段,长时间熬夜学习严重影响学生的身体健康.某校为了解甲、乙两个班的学生每周熬夜学习的总时长(单位:小时),从这两个班中各随机抽取名同学进行调查,将他们最近一周熬夜学习的总时长作为样本数据,如下表所示.如果学生一周熬夜学习的总时长超过小时,则称为“过度熬夜”.甲班乙班(1)分别计算出甲、乙两班样本的平均值;(2)为了解学生过度熬夜的原因,从甲、乙两班符合“过度熬夜”的样本数据中,抽取个数据,求抽到的数据来自同一个班级的概率;(3)从甲班的样本数据中有放回地抽取个数据,求恰有个数据为“过度熬夜”的概率18.已知是定义在上的奇函数,,当时的解析式为.(1)写出在上的解析式;(2)求在上的最值.19.已知函数(,且)(1)求的值及函数的定义域;(2)若函数在上的最大值与最小值之差为3,求实数的值20.已知函数,其中m为常数,且(1)求m的值;(2)用定义法证明在R上是减函数21.(1)已知,求;(2)已知,,,是第三象限角,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据三视图的法则:长对正,高平齐,宽相等;可得几何体如右图所示,这是一个三棱柱.表面积为:故答案为B.2、C【解析】利用有理指数幂与对数的运算性质分别比较,,与1和2的大小得答案【详解】∵,且,,,∴故选C【点睛】本题考查对数值的大小比较,考查有理指数幂与对数的运算性质,寻找中间量是解题的关键,属于基础题3、D【解析】作出几何体的直观图观察即可.【详解】解:连接CF,C1F1,与棱AB平行的有,共有5条,故选:D.4、B【解析】由已知得,因为,所以,即,解得.选B5、B【解析】根据二次函数的单调性可得出关于的不等式,即可得解.【详解】因为函数在区间上单调递增,则,解得.故选:B.6、C【解析】利用赋值法来求得正确答案.【详解】当k=2n,n∈Z时,n360°+45°≤α≤n360°+90°,n∈Z;当k=2n+1,n∈Z时,n360°+225°≤α≤n360°+270°,n∈Z.故选:C7、D【解析】分析:直接利用周期公式求解即可.详解:∵,,∴.故选D点睛:本题主要考查三角函数的图象与性质,属于简单题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.8、C【解析】由题意可知旋转后的几何体如图:
直角梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积.9、C【解析】求出集合,利用交集的定义可求得集合.【详解】已知,,,则,因此,.故选:C.10、D【解析】求出,由三角函数定义求得,再由诱导公式得结论【详解】依题有,∴,∴.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】考点:该题主要考查平面向量的概念、数量积的性质等基础知识,考查数学能力.12、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:13、f【解析】利用三角函数图象的平移和伸缩变换即可得正确答案.【详解】函数y=sin2x+π得到y=sin再向右平移π4个单位,得到y=故最终所得到的函数解析式为:fx故答案为:fx14、##【解析】化简已知条件,求得,通过两边平方的方法求得,进而求得.【详解】依题意,①,,,化简得①,则,由,得,,.故答案为:15、①.32②.135【解析】由平均数与方差的性质即可求解.【详解】由题意,数据的平均数为,方差为.故答案为:;16、【解析】根据题意,f(x)为奇函数,若f(2)=1,则f(−2)=-1,f(x)在(−∞,+∞)单调递增,且−1⩽f(x−2)⩽1,即f(-2)⩽f(x−2)⩽f(2),则有−2⩽x−2⩽2,解可得0⩽x⩽4,即x的取值范围是;故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3)【解析】(1)利用平均数公式代入求解;(2)由题意得甲班和乙班各有“过度熬夜”的人数为,计算得基本事件总数和个数据来自同一个班级的基本事件的个数,然后利用古典概型的公式代入计算取个数据来自同一个班级的概率;(3)甲班共有个数据,其中“过度熬夜”的数据有个,计算得基本事件总数和恰有个数据为“过度熬夜”的基本事件的个数,利用古典概型的公式代入计算恰有个数据为“过度熬夜”的概率.【详解】(1)甲的平均值:;乙的平均值:;(2)由题意,甲班和乙班各有“过度熬夜”的人数为,抽取个数据,基本事件的总数为个,抽到来自同一个班级的基本事件的个数为,则抽取个数据来自同一个班级的概率为;(3)甲班共有个数据,其中“过度熬夜”的数据有个,从甲班的样本数据中有放回地抽取个数据,基本事件的总数为个,恰有个数据为“过度熬夜”包含的基本事件的个数为个,则恰有个数据为“过度熬夜”的概率为.18、(1)(2)最大值为0,最小值为【解析】(1)先求得参数,再依据奇函数性质即可求得在上的解析式;(2)转化为二次函数在给定区间求值域即可解决.【小问1详解】因为是定义在上的奇函数,所以,即,由,得,由,解得,则当时,函数解析式为设,则,,即当时,【小问2详解】当时,,所以当,即时,的最大值为0,当,即时,的最小值为.19、(1)0;;(2)或.【解析】(1)代入计算得,由对数有意义列出不等式求解作答.(2)由a值分类讨论单调性,再列式计算作答.【小问1详解】函数,则,由解得:,所以的值是0,的定义域是.【小问2详解】当时,在上单调递减,,,于是得,即,解得,则,当时,在上单调递增,,,于是得,即,解得,则,所以实数的值为或.20、(1)1;(2)证明见解析.【解析】(1)将代入函数解析式直接计算即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工会法律办培训课件
- 绿色发展党课解读
- 安全生产约谈机制讲解
- 吉林国企面试技巧指南
- 7.1 牛顿第一定律 课件+素材-2024-2025学年沪科版物理八年级下册
- 未来五年助动车等修理与维护企业县域市场拓展与下沉战略分析研究报告
- 未来五年地质遗迹保护区管理服务企业县域市场拓展与下沉战略分析研究报告
- 未来五年海马养殖企业县域市场拓展与下沉战略分析研究报告
- 发热的相关知识课件
- 医学与医患沟通的关联
- 动火作业考试卷子及答案
- 机电设施设备安装施工方案
- 山东省济南市莱芜区2024-2025学年八年级上学期期末考试物理试题
- 抽动症课件教学课件
- 特殊工时审批告知承诺制承诺书和授权委托书
- 2025中原农业保险股份有限公司招聘67人笔试考试参考试题及答案解析
- 税务局职工合同范本
- 研培中心遴选教研员历年考试试题及答案2024
- 2026年中考地理一轮复习课件28河流专题
- 2025年国家开放大学《管理学基础》期末考试备考试题及答案解析
- 矿石营销方案
评论
0/150
提交评论