版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市塘沽滨海中学2026届高二数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线的焦点为,则其标准方程为()A. B.C. D.2.函数的定义域为,其导函数的图像如图所示,则函数极值点的个数为()A.2 B.3C.4 D.53.已知实数、满足,则的最大值为()A. B.C. D.4.若a>b,c>d,则下列不等式中一定正确的是()A. B.C. D.5.设是等差数列,是其公差,是其前n项的和.若,,则下列结论不正确的是()A. B.C. D.与均为的最大值6.某程序框图如图所示,该程序运行后输出的k的值是A.3 B.4C.5 D.67.已知等比数列的前项和为,若,,则()A.20 B.30C.40 D.508.已知数列是公差为等差数列,,则()A.1 B.3C.6 D.99.下列三个命题:①“若,则a,b全为0”的逆否命题是“若a,b全不为0,则”;②若事件A与事件B互斥,则;③设命题p:若m是质数,则m一定是奇数,那么是真命题;其中真命题的个数为()A.3 B.2C.1 D.010.已知椭圆的右焦点和右顶点分别为F,A,离心率为,且,则n的值为()A.4 B.3C.2 D.11.已知命题:;:若,则,则下列判断正确的是()A.为真,为真,为假 B.为真,为假,为真C.为假,为假,为假 D.为真,为假,为假12.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线过点,,且是直线的一个方向向量,则__________.14.过点且与直线平行的直线的方程是______.15.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______16.如图,一个小球从10m高处自由落下,每次着地后又弹回到原来高度的,若已知小球经过的路程为,则小球落地的次数为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆经过点,椭圆E的一个焦点为.(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于两点.求的最大值.18.(12分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点,A是椭圆C与x轴正半轴的交点,直线AP的斜率为,若椭圆长轴长为8(1)求椭圆C的方程;(2)点Q为椭圆上任意一点,求面积的最大值19.(12分)设关于x的不等式的解集为A,关于x的不等式的解集为B(1)求集合A,B;(2)若是的必要不充分条件,求实数m的取值范围20.(12分)已知数列的前n项和为,满足,(1)求证:数列是等比数列,并求数列的通项公式;(2)设,为数列的前n项和,①求;②若不等式对任意的正整数n恒成立,求实数的取值范围21.(12分)已知抛物线的方程为,点,过点的直线交抛物线于,两点(1)是否为定值?若是,求出该定值;若不是,说明理由;(2)若点是直线上的动点,且,求面积的最小值22.(10分)如图,已知正方体的棱长为2,,,分别为,,的中点(1)求直线与直线所成角余弦值;(2)求点到平面的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意设出抛物线的标准方程,再利用焦点为建立,解方程即可.【详解】由题意,设抛物线标准方程为,所以,解得,所以抛物线标准方程为.故选:D2、C【解析】根据给定的导函数的图象,结合函数的极值的定义,即可求解.【详解】如图所示,设导函数的图象与轴的交点分别为,根据函数的极值的定义可知在该点处的左右两侧的导数符号相反,可得为函数的极大值点,为函数的极小值点,所以函数极值点的个数为4个.故选:C.3、A【解析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.4、B【解析】根据不等式的性质及反例判断各个选项.【详解】因为c>d,所以,所以,所以B正确;时,不满足选项A;时,,且,所以不满足选项CD;故选:B5、C【解析】由已知条件可以得出,,,即可得公差,再利用等差数列的性质以及前n项的和的性质可判断每个选项的正误,进而可得正确选项.【详解】由可得,由可得,故选项B正确;由可得,因为公差,故选项A正确,,所以,故选项C不正确;由于是等差数列,公差,,,,所以都是的最大值,故选项D正确;所以选项C不正确,故选:C6、B【解析】循环体第一次运行后;第二次运行后;第三次运行后,第四次运行后;循环结束,输出值为4,答案选B考点:程序框图的功能7、B【解析】根据等比数列前项和的性质进行求解即可.【详解】因为是等比数列,所以成等比数列,即成等比数列,显然,故选:B8、D【解析】结合等差数列的通项公式求得.【详解】设公差,.故选:D9、B【解析】写出逆否命题可判断①;根据互斥事件的概率定义可判断②;根据写出再判断真假可判断③.【详解】对于①,“,则a,b全为0”的逆否命题是“若a,b不全为0,则”,故①错误;对于②,满足互斥事件的概率求和的方法,所以②为真命题;③命题p:若m是质数,则m一定是奇数.2是质数,但2是偶数,命题p是假命题,那么真命题故选:B.10、B【解析】根据椭圆方程及其性质有,求解即可.【详解】由题设,,整理得,可得.故选:B11、D【解析】先判断出命题,的真假,即可判断.【详解】因为成立,所以命题为真,由可得或,所以命题为假命题,所以为真,为假,为假.故选:D.12、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题得,解方程组即得解.【详解】解:由题得,因为是直线的一个方向向量,所以,所以,所以.故答案为:14、【解析】设出直线的方程,代入点的坐标,求出直线的方程.【详解】设过点且与直线平行的直线的方程为,将代入,则,解得:,所以直线的方程为.故答案为:15、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:16、4【解析】设小球从第(n-1)次落地到第n次落地时经过的路程为m,则由已知可得数列是从第2项开始以首项为,公比为的等比数列,根据等比数列的通项公式求得,再设设小球第n次落地时,经过的路程为,由等比数列的求和公式建立方程求解即可.【详解】解:设小球从第(n-1)次落地到第n次落地时经过的路程为m,则当时,得出递推关系,所以数列是从第2项开始以首项为,公比为的等比数列,所以,且,设小球第n次落地时,经过的路程为,所以,所以,解得,故答案为:4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设椭圆的左,右焦点分别为,.利用椭圆的定义求出,然后求解,得到椭圆方程;(2)当直线的斜率存在时,设,,,,,联立直线与椭圆方程,利用韦达定理以及弦长公式得到弦长的表达式,再通过换元利用二次函数的性质求解最值即可【小问1详解】依题意,设椭圆的左,右焦点分别为,则,,,,椭圆的方程为【小问2详解】当直线的斜率存在时,设,,,,由得由得由,得设,则,当直线的斜率不存在时,,的最大值为18、(1)(2)18【解析】(1)易得,,进而有,再结合已知即可求解;(2)由(1)易得直线AP的方程为,,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,联立即可得与AP距离比较远的切线方程,从而即可求解.【小问1详解】解:由题意,将代入椭圆方程,得,又∵,∴,化简得,解得,又,,所以,∴,∴椭圆的方程为;【小问2详解】解:由(1)知,直线AP的方程为,即,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,化简可得,由,即,解得,所以与AP距离比较远的切线方程,因为与之间的距离,又,所以的面积的最大值为19、(1),(2)【解析】(1)直接解不等式即可,(2)由题意可得,从而可得解不等式组可求得答案【小问1详解】由,得,故由,得,故【小问2详解】依题意得:,∴解得∴m的取值范围为20、(1)证明见解析,(2)①;②【解析】(1)由得到,即可得到,从而得证,即可求出的通项公式,从而得到的通项公式;(2)①由(1)可得,再利用错位相减法求和即可;②利用作差法证明的单调性,即可得到,即可得到,再解一元二次不等式即可;【小问1详解】证明:由,,当时,可得,解得,当时,,又,两式相减得,所以,所以,即,则数列是首项为,公比为的等比数列;所以,所以【小问2详解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即单调递增,所以,因为不等式对任意的正整数n恒成立,所以,即,解得或,即21、(1)是,;(2)【解析】(1)由题意设出所在直线方程,与抛物线方程联立,化为关于的一元二次方程,由根与系数的关系即可求得为定值;(2)当的斜率为0时,求得三角形的面积为;当的斜率不为0时,由弦长公式求解,再由点到直线的距离公式求到的距离,代入三角形面积公式,利用函数单调性可得三角形的面积大于,由此可得面积的最小值【详解】(1)由题意知,直线斜率存在,不妨设其方程为,联立抛物线的方程可得,设,,则,,所以,,所以,所以是定值(2)当直线的斜率为0时,,又,,此时当直线的斜率不力0时,,又因为,且直线的斜率不为0,所以,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年安徽大学集成电路学院王翊课题组科研助理招聘备考题库带答案详解
- 2026年中能建(北京)绿色能源科技有限公司招聘备考题库附答案详解
- 2026年保山市隆阳区瓦房彝族苗族乡中心卫生院乡村医生招聘备考题库及一套参考答案详解
- 2026年中国电力工程顾问集团西南电力设计院有限公司招聘备考题库及完整答案详解一套
- 2025年舟山医院公开招聘编外人员招聘备考题库参考答案详解
- 保密内控制度
- 未建立内控制度
- 旅行社质量内控制度
- 医疗保险内控制度
- 工会未建立内控制度
- 【高三上】广东省华师联盟2026届高三12月质量检测语文试题含答案
- 2025年广州市花都区花东镇人民政府公开招聘执法辅助工作人员备考题库带答案详解
- 小学生用电安全知识课件
- 2025-2030中国海洋产业市场深度研究及发展方向与投资潜力分析报告
- 2026年收益分成协议
- “一带一路”视角下民航客舱服务跨文化素养的研究-以海南航空公司为例 工商管理专业
- 检查井工程量计算模板(原)
- 医学生物化学学习指导与习题集
- 保育员考试:中级保育员题库
- GB 14746-2006儿童自行车安全要求
- GA/T 594-2006保安服务操作规程与质量控制
评论
0/150
提交评论