版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市祁阳县2026届高二数学第一学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在棱长为1的正方体中,M是的中点,则点到平面MBD的距离是()A. B.C. D.2.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.3.平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是()A.双曲线 B.抛物线C.椭圆 D.圆4.为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线与曲线)为某双曲线(离心率为2)的一部分,曲线与曲线中间最窄处间的距离为,点与点,点与点均关于该双曲线的对称中心对称,且,则()A. B.C. D.5.过点作圆的切线,则切线的方程为()A. B.C.或 D.或6.已知i是虚数单位,复数z=,则复数z的虚部为()A.i B.-iC.1 D.-17.若抛物线x=﹣my2的焦点到准线的距离为2,则m=()A.﹣4 B.C. D.±8.若的解集是,则等于()A.-14 B.-6C.6 D.149.若椭圆的短轴为,一个焦点为,且为等边三角形的椭圆的离心率是A. B.C. D.10.直线的倾斜角为()A B.C. D.11.在空间四边形OABC中,,,,点M在线段OA上,且,N为BC中点,则等于()A. B.C. D.12.若正实数、满足,且不等式有解,则实数取值范围是()A.或 B.或C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,分别是椭圆和双曲线的离心率,,是它们的公共焦点,M是它们的一个公共点,且,则的最大值为______14.抛物线的焦点到准线的距离等于__________.15.已知抛物线:()的焦点到准线的距离为4,过点的直线与抛物线交于,两点,若,则______16.若,且,则的最小值是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l经过直线,的交点M(1)若直线l与直线平行,求直线l的方程;(2)若直线l与x轴,y轴分别交于A,两点,且M为线段AB的中点,求的面积(其中O为坐标原点)18.(12分)已知圆,直线过定点.(1)若与圆相切,求的方程;(2)若与圆相交于两点,且,求此时直线的方程.19.(12分)已知圆,直线(1)当直线与圆相交,求的取值范围;(2)当直线与圆相交于、两点,且时,求直线的方程20.(12分)某城市一入城交通路段限速60公里/小时,现对某时段通过该交通路段的n辆小汽车车速进行统计,并绘制成频率分布直方图(如图).若这n辆小汽车中,速度在50~60公里小时之间的车辆有200辆.(1)求n的值;(2)估计这n辆小汽车车速的中位数;(3)根据交通法规定,小车超速在规定时速10%以内(含10%)不罚款,超过时速规定10%以上,需要罚款.试根据频率分布直方图,以频率作为概率的估计值,估计某辆小汽车在该时段通过该路段时被罚款的概率.21.(12分)设数列是公比为正整数的等比数列,满足,,设数列满足,.(1)求数列的通项公式;(2)求证:数列是等差数列,并求数列的通项公式;(3)已知数列,设,求数列的前项和.22.(10分)设函数(1)若,求的单调区间和极值;(2)在(1)的条件下,证明:若存在零点,则在区间上仅有一个零点;(3)若存在,使得,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】等体积法求解点到平面的距离.【详解】连接,,则,,由勾股定理得:,,取BD中点E,连接ME,由三线合一得:ME⊥BD,则,故,设到平面MBD的距离是,则,解得:,故点到平面MBD的距离是.故选:A2、D【解析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【点睛】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.3、A【解析】设点,利用距离公式化简可得出点的轨迹方程,即可得出动点的轨迹图形.【详解】设点,由题意可得,化简可得,即,曲线为反比例函数图象,故动点的轨迹是双曲线.故选:A.4、D【解析】依题意以双曲线的对称中心为坐标原点建系,设双曲线的方程为,根据已知求得,点纵坐标代入计算即可求得横坐标得出结果.【详解】以双曲线的对称中心为坐标原点,建立平面直角坐标系,因为双曲线的离心率为2,所以可设双曲线的方程为,依题意可得,则,即双曲线的方程为.因为,所以的纵坐标为18.由,得,故.故选:D.5、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C6、C【解析】先通过复数的除法运算求出z,进而求出虚部.【详解】由题意,,则z的虚部为1.故选:C.7、D【解析】把抛物线的方程化为标准方程,由焦点到准线的距离为,即可得到结果,得到答案.【详解】由题意,抛物线,可得,又由抛物线的焦点到准线的距离为2,即,解得.故选D.【点睛】本题主要考查了抛物线的标准方程,以及简单的几何性质的应用,其中解答中熟记抛物线的焦点到准线的距离为是解答的关键,着重考查了推理与计算能力,属于基础题.8、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.9、B【解析】因为为等边三角形,所以.考点:椭圆的几何性质.点评:椭圆图形当中有一个特征三角形,它的三边分别为a,b,c.因而可据此求出离心率.10、C【解析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的关系求解即可.【详解】设直线的倾斜角为,则,∵,所以.故选:C11、B【解析】由题意结合图形,直接利用,求出,然后即可解答.【详解】解:因为空间四边形OABC如图,,,,点M在线段OA上,且,N为BC的中点,所以.所以.故选:B.12、A【解析】将代数式与相乘,展开后利用基本不等式可求得的最小值,可得出关于实数的不等式,解之即可.【详解】因为正实数、满足,则,即,所以,,当且仅当时,即当时,等号成立,即的最小值为,因为不等式有解,则,即,即,解得或.故选:A.II卷二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用椭圆、双曲线的定义以及余弦定理找到的关系,然后利用三角换元求最值即可.【详解】解析:设椭圆的长半轴为a,双曲线的实半轴为,半焦距为c,设,,,因为,所以由余弦定理可得,①在椭圆中,,①化简为,即,②在双曲线中,,①化简为,即,③联立②③得,,即,记,,,则,当且仅当,即,时取等号故答案为:.14、【解析】先将抛物线方程,转化为标准方程,求得焦点坐标,准线方程即可.【详解】因为抛物线方程是,转化为标准方程得:,所以抛物线开口方向向右,焦点坐标准线方程为:,所以焦点到准线的距离等于.故答案为:【点睛】本题主要考查抛物线的标准方程,还考查了理解辨析的能力,属于基础题.15、15【解析】易得抛物线方程为,根据,求得点P的坐标,进而得到直线l的方程,与抛物线方程联立,再利用抛物线定义求解.【详解】解:因为抛物线的焦点到准线的距离为4,所以,则抛物线:,设点的坐标为,的坐标为,因为,所以,则,则,所以直线的方程为,代入抛物线方程可得,故,则,所以故答案为:1516、【解析】应用基本不等式“1”的代换求a+4b的最小值即可.【详解】由,有,则,当且仅当,且,即时等号成立,∴最小值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)4【解析】(1)求出两直线的交点M的坐标,设直线l的方程为代入点M的坐标可得答案;(2)设,,因为为线段AB的中点,可得,由的面积为可得答案.【小问1详解】由,得,所以点M坐标为,因为,则设直线l的方程为,又l过点,代入得,故直线l方程为.【小问2详解】设,,因为为线段AB的中点,则,所以,故,,则的面积为.18、(1)或;(2)或.【解析】(1)由圆的方程可得圆心和半径,当直线斜率不存在时,知与圆相切,满足题意;当直线斜率存在时,利用圆心到直线距离等于半径可构造方程求得,由此可得方程;(2)当直线斜率不存在时,知与圆相切,不合题意;当直线斜率存在时,利用垂径定理可构造方程求得,由此可得方程.【小问1详解】由圆的方程知:圆心,半径;当直线斜率不存在,即时,与圆相切,满足题意;当直线斜率存在时,设,即,圆心到直线距离,解得:,,即;综上所述:直线方程为或;【小问2详解】当直线斜率不存在,即时,与圆相切,不合题意;当直线斜率存在时,设,即,圆心到直线距离,,解得:或,直线的方程为或.19、(1);(2)或【解析】(1)根据直线与圆的位置关系,利用几何法可得出关于实数的不等式,由此可解得实数的取值范围;(2)根据勾股定理求出圆心到直线的距离,再利用点到直线的距离公式可得出关于实数的值,即可求出直线的方程.【小问1详解】解:圆的标准方程为,圆心为,半径为,因为直线与圆相交,则,解得.【小问2详解】解:因为,则圆心到直线的距离为,由点到直线的距离公式可得,整理得,解得或.所以,直线的方程为或.20、(1)(2)(3)【解析】(1)根据已知条件,结合频率与频数的关系,即可求解(2)根据已知条件,结合中位数公式,即可求解(3)在这500辆小车中,有40辆超速,再结合古典概型的概率公式,即可求解【小问1详解】解:由直方图可知,速度在公里小时之间的频率为,所以,解得【小问2详解】解:设这辆小汽车车速的中位数为,则,解得小问3详解】解:由交通法则可知,小车速度在66公里小时以上需要罚款,由直方图可知,小车速度在之间有辆,由统计的有关知识,可以认为车速在公里小时之间的小车有辆,小车速度在之间有辆,故估计某辆小汽车在该时段通过该路段时被罚放的概率为21、(1)(2)证明见解析,(3)【解析】(1)根据等比数列列出方程组求解首项、公比即可得解;(2)化简后得,可证明数列是等差数列,即可得出,再求出即可;(3)利用错位相减法求出数列的和.【小问1详解】设公比为,由条件可知,,所以;【小问2详解】,又,所以,所以数列是以为首项,为公差等差数列,所以,所以.【小问3详解】,,两式相减可得,,.22、(1)递减区间是,单调递增区间是,极小值(2)证明见解析(3)【解析】(1)对函数进行求导通分化简,求出解得,在列出与在区间上的表格,即可得到答案.(2)由(1)知,在区间上的最小值为,因为存在零点,所以,从而.在对进行分类讨论,再利用函数的单调性得出结论.(3)构造函数,在对进行求导,在对进行分情况讨论,即可得的得到答案.【小问1详解】函数的定义域为,,由解得与在区间上的情况如下:–↘↗所以,的单调递减区间是,单调递增区间是;在处取得极小值,无极大值【小问2详解】由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职会计事务(财务会计)试题及答案
- 2025年大学新能源汽车技术(新能源汽车设计)试题及答案
- 工程机械安全常识课件
- 工程抢修培训课件教学
- 制定目标的培训课件
- 【初中 生物】我国的植物资源及保护课件-2025-2026学年北师大版生物学八年级下册
- 2026年食品安全知识竞赛试题库及答案
- 成果转化积极性提升策略研究
- 安全巡查安全操作题
- 慢阻肺智能监测预警与社区早期随访干预策略
- 草原补偿协议书
- 江苏省2025年普通高中学业水平合格性考试试卷英语试卷(含答案详解)
- 2025年全国新闻记者职业资格考试(新闻采编实务)题库及完整答案
- 人教鄂教版(2017秋)小学科学四年级上册期末综合质量检测卷(含答案)
- 腭裂喂养护理:新生儿与婴儿喂养技巧
- 呼吸机管路护理与VAP预防的关键措施
- (2026年)植入式静脉给药装置(输液港)团体标准解读课件
- 服装上下游合同范本
- 宁波大学《通信原理》期末考试试题
- GB∕T 5824-2021 建筑门窗洞口尺寸系列
- 中学生两会模拟提案
评论
0/150
提交评论