版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省眉山市仁寿一中南校区数学高二上期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则等于()A.2 B.C. D.2.若函数恰好有个不同的零点,则的取值范围是()A. B.C. D.3.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.4.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.25.设椭圆C:的右焦点为F,过原点O的动直线l与椭圆C交于A,B两点,那么的周长的取值范围为()A. B.C. D.6.如图,是边长为4的等边三角形的中位线,将沿折起,使得点A与P重合,平面平面,则四棱锥外接球的表面积是()A. B.C. D.7.已知直线与直线垂直,则()A. B.C. D.38.抛物线的焦点到准线的距离()A.4 B.C.2 D.9.已知是抛物线的焦点,为抛物线上的动点,且的坐标为,则的最小值是A. B.C. D.10.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.411.两条平行直线与之间的距离为()A. B.C. D.12.已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设空间向量,且,则___________.14.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______15.在中,,,的外接圆半径为,则边c的长为_____.16.计算:________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.18.(12分)如图,四棱锥P-ABCD的底面是矩形,底面ABCD,,M为BC中点,且.(1)求BC;(2)求二面角A-PM-B的正弦值.19.(12分)已知p:方程所表示的曲线为焦点在x轴上的椭圆;q:当时,函数恒成立.(1)若p为真,求实数t的取值范围;(2)若为假命题,且为真命题,求实数t的取值范围20.(12分)如图,已知圆锥SO底面圆的半径r=1,直径AB与直径CD垂直,母线SA与底面所成的角为.(1)求圆锥SO的侧面积;(2)若E为母线SA的中点,求二面角E-CD-B的大小.(结果用反三角函数值表示)21.(12分)已知圆.(1)过点作圆的切线,求切线的方程;(2)若直线过点且被圆截得的弦长为2,求直线的方程.22.(10分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用两角和的正切公式计算出正确答案.【详解】.故选:D2、D【解析】分析可知,直线与函数的图象有个交点,利用导数分析函数的单调性与极值,数形结合可求得实数的取值范围.【详解】令,可得,构造函数,其中,由题意可知,直线与函数的图象有个交点,,由,可得或,列表如下:增极大值减极小值增所以,,,作出直线与函数的图象如下图所示:由图可知,当时,即当时,直线与函数的图象有个交点,即函数有个零点.故选:D.3、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B4、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.5、A【解析】根据椭圆的对称性椭圆的定义可得,结合的范围求的周长的取值范围.【详解】的周长,又因为A,B两点为过原点O的动直线l与椭圆C的交点,所以A,B两点关于原点对称,椭圆C的左焦点为,则,所以,又因为三点不共线,所以,所以的周长的取值范围为,故选:A.6、A【解析】分别取的中点,易得,则点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,设外接球的半径为,,利用勾股定理求得半径,从而可得出答案.【详解】解:分别取的中点,在等边三角形中,,是中位线,则都是等边三角形,所以,所以点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,由为的中点,所以,因为平面平面,且平面平面,平面,所以平面,则,设外接球半径为,,,则,,所以,解得,所以,所以四棱锥外接球的表面积是.故选:A.第II卷7、D【解析】先分别求出两条直线的斜率,再利用两直线垂直斜率之积为,即可求出.【详解】由已知得直线与直线的斜率分别为、,∵直线与直线垂直,∴,解得,故选:.8、A【解析】写出抛物线的标准方程,即可确定焦点到准线的距离.【详解】由题设,抛物线的标准方程为,则,∴焦点到准线的距离为4.故选:A.9、C【解析】由题意可得,抛物线的焦点,准线方程为过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角∴当最小时,最小,则当和抛物线相切时,最小设切点,由的导数为,则的斜率为.∴,则.∴,∴故选C点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化,这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.10、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题11、D【解析】由已知有,所以直线可化为,利用两平行直线距离公式有,选D.点睛:本题主要考查两平行直线间的距离公式,属于易错题.在用两平行直线距离公式时,两直线中的系数要相同,不然不能用此公式计算12、A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据,由求解.【详解】因为向量,且,所以,即,解得.故答案为:114、【解析】根据数列递增和递减的定义求出实数a的取值范围.【详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:15、【解析】由面积公式求得,结合外接圆半径,利用正弦定理得到边c的长.【详解】,从而,由正弦定理得:,解得:故答案为:16、【解析】根据无穷等比数列的求和公式直接即可求出答案.【详解】.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.18、(1);(2).【解析】(1)根据给定条件推导证得,再借助直角三角形中锐角的正切列式求解作答.(2)由给定条件建立空间直角坐标系,借助空间向量求解面面角作答【小问1详解】连结BD,如图,因底面ABCD,且平面ABCD,则,又,,平面PBD,于是得平面PBD,又平面PBD,则,有,又,则有,有,则,解得,所以.【小问2详解】依题意,DA,DC,DP两两垂直,以点D为坐标原点建立如图所示的空间直角坐标系,由(1)知,,,,,,,,设平面AMP的法向量为,则,令,得,设平面BMP的法向量为,则,令,得,设二面角A-PM-B的平面角为,则,因此,,所以二面角A-PM-B的正弦值为.19、(1)(2)【解析】(1)由给定条件结合椭圆标准方程的特征列不等式求解作答.(2)求命题q真时的t值范围,再借助“或”联结的命题为真命题求解作答.【小问1详解】因方程所表示的曲线为焦点在x轴上的椭圆,则有,解得,所以实数t的取值范围是.【小问2详解】,则有,当且仅当,即时取“=”,即,因当时,函数恒成立,则,解得,命题q为真命题有,因为假命题,且为真命题,则与一真一假,当p真q假时,,当p假q真时,,所以实数t的取值范围是.20、(1)(2)【解析】(1)先根据母线与底面的夹角求出圆锥的母线长,然后根据圆锥的侧面积公式即可(2)利用三角形的中位线性质,先求出二面角,然后利用二面角与二面角的互补关系即可求得【小问1详解】根据母线SA与底面所成的角为,且底面圆的半径可得:则圆锥的侧面积为:【小问2详解】如图所示,过点作底面的垂线交于,连接,则为的中位线则有:,,易知,则,又直径AB与直径CD垂直,则则有:为二面角可得:又二面角与二面角互为补角,则二面角的余弦值为故二面角大小为21、(1);(2)或.【解析】(1)根据直线与圆相切,求得切线的斜率,利用点斜式即可写出切线方程;(2)利用弦长公式,结合已知条件求得直线的斜率,即可求得直线方程.【小问1详解】圆,圆心,半径,又点的坐标满足圆方程,故可得点在圆上,则切线斜率满足,又,故满足题意的切线斜率,则过点的切线方程为,即.【小问2详解】直线过点,若斜率不存在,此时直线的方程为,将其代入可得或,故直线截圆所得弦长为满足题意;若斜率存在时,设直线方程为,则圆心到直线的距离,由弦长公式可得:,解得,也即,解得,则此时直线的方程为:.综上所述,直线的方程为或.22、(1);(2).【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制造业工艺流程优化及实施方案
- 农业香菇种植技术综合教学方案
- 制造企业绩效考核指标体系设计方案
- 幼儿识字常用汉字大全指导手册
- 高一化学(人教版)教学课件 必修二 第五章 第二节 第1课时 氮气与氮的固定 一氧化氮和二氧化氮
- 小学英语分层教学与评价标准体系
- 工业机器人维护与安全操作指南
- 企业合同档案管理办法
- 高效班级管理模式实践与案例分析
- 泌尿结石病人护理
- 2025天津中煤进出口有限公司面向中国中煤内部及社会招聘第三批电力人才21人笔试参考题库附带答案详解(3卷合一)
- 2026马年卡通特色期末评语(45条)
- 噪声监测系统施工方案
- 2025年杭州余杭水务有限公司招聘36人笔试参考题库及答案解析
- led屏安装施工步骤方案
- 2026年河北单招职业技能短视频制作实操题库含答案分镜头剪辑规范
- 大一军事理论课件全套
- 2025 AHA心肺复苏与心血管急救指南
- 钢筋桁架楼承板专项施工方案
- 急性膀胱炎课件
- 公铁港多式联运综合物流园项目技术方案
评论
0/150
提交评论