版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市临泉县一中2026届高一数学第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,且在上单调递增,若,则的解集为()A. B.C. D.2.在下列区间中,函数fxA.0,14C.12,3.函数f(x)=lnx﹣1的零点所在的区间是A(1,2) B.(2,3)C.(3,4) D.(4,5)4.要证明命题“所有实数的平方都是正数”是假命题,只需()A.证明所有实数的平方都不是正数B.证明平方是正数的实数有无限多个C.至少找到一个实数,其平方是正数D.至少找到一个实数,其平方不是正数5.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.646.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个7.,是两个平面,,是两条直线,则下列命题中错误的是()A.如果,,,那么B.如果,,那么C.如果,,,那么D.如果,,,那么8.已知,,,则a,b,c的大小关系为()A. B.C. D.9.已知向量,满足,,且与的夹角为,则()A. B.C. D.10.已知函数为奇函数,且当时,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.12.若,则实数的值为______.13.函数的定义域是___________,若在定义域上是单调递增函数,则实数的取值范围是___________14.已知函数则不等式的解集是_____________15.已知=-5,那么tanα=________.16.的定义域为________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在R上的偶函数,当时,(1)画出函数的图象;(2)根据图象写出的单调区间,并写出函数的值域.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?19.函数(其中)的图像如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数在上的最大值和最小值.20.已知函数.(1)求方程在上的解;(2)求证:对任意的,方程都有解21.已知函数,函数.(1)填空:函数的增区间为___________(2)若命题“”为真命题,求实数的取值范围;(3)是否存在实数,使函数在上的最大值为?如果存在,求出实数所有的值.如果不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由可得,由单调性即可判定在和上的符号,再由奇偶性判定在和上的符号,即可求解.【详解】∵即,∵在上单调递增,∴当时,,此时,当时,,此时,又∵是定义在上的奇函数,∴在上单调递增,且,当时,,此时,当时,,此时,综上可知,的解集为,故选:D【点睛】本题考查了函数的奇偶性和单调性的交汇,求得函数在各个区间上的符号是关键,考查了推理能力,属于中档题.2、C【解析】利用零点存在定理即可判断.【详解】函数fx=e因为函数y=ex,y=2x-3均为增函数,所以fx又f1=ef12=由零点存在定理可得:fx的零点所在的区间为1故选:C3、B【解析】∵,在递增,而,∴函数的零点所在的区间是,故选B.4、D【解析】全称命题是假命题,则其否定一定是真命题,判断选项.【详解】命题“所有实数的平方都是正数”是全称命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数.故选:D5、B【解析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.6、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B7、D【解析】A.由面面垂直的判定定理判断;B.由面面平行的性质定理判断;C.由线面平行的性质定理判断;D.由平面与平面的位置关系判断;【详解】A.如果,,,由面面垂直的判定定理得,故正确;B.如果,,由面面平行的性质定理得,故正确;C.如果,,,由线面平行的性质定理得,故正确;D如果,,,那么相交或平行,故错误;故选:D【点睛】本题主要考查空间中线线、线面、面面间的位置关系,还考查了理解辨析和逻辑推理的能力,属于中档题.8、D【解析】与中间值1和2比较.【详解】,,,所以故选:D.【点睛】本题考查幂与对数的大小比较,在比较对数和幂的大小时,能化为同底数的化为同底数,再利用函数的单调性比较,否则可借助中间值比较,如0,1,2等等.9、A【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.【详解】因为,,且与的夹角为,所以,因此.故选:A.10、C【解析】根据奇函数的定义得到,又由解析式得到,进而得到结果.【详解】因为函数为奇函数,故得到当时,,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为12、【解析】由指数式与对数式的互化公式求解即可【详解】因为,所以,故答案为:13、①.##②.【解析】根据对数函数的定义域求出x的取值范围即可;结合对数复合型函数的单调性与一次函数的单调性即可得出结果.【详解】由题意知,,得,即函数的定义域为;又函数在定义域上单调增函数,而函数在上单调递减,所以函数为减函数,故.故答案为:;14、【解析】分和0的大小关系分别代入对应的解析式即可求解结论.【详解】∵函数,∴当,即时,,故;当,即时,,故;∴不等式的解集是:.故答案为:.15、-【解析】由已知得=-5,化简即得解.【详解】易知cosα≠0,由=-5,得=-5,解得tanα=-.故答案为:-【点睛】本题主要考查同角的商数关系,意在考查学生对这些知识的理解掌握水平.16、【解析】由分子根式内部的代数式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定义域为考点:函数的定义域及其求法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)单调区间为:上是增函数,上是减函数,值域【解析】(1)由偶函数的图象关于y轴对称可知,要画出函数的图象,只须作出当时的图象,然后关于y轴对称即可;(2)观察图象,结合函数单调性和值域的定义,写出的单调区间及值域.【详解】(1)函数的图象如图所示
(2)由图象得,的单调区间为:上是增函数,上是减函数,值域为.【点睛】本题考查了偶函数的性质:图象关于y轴对称和数形结合思想,函数的图象可直观反映其性质,利用函数的图象可以解答函数的值域(最值),单调性,奇偶性等问题,也可用来解答不等式的有关题目.18、(1)(2)4万件【解析】(1)由题意,总成本,由即可得利润函数解析式;(2)根据反比例函数及二次函数的单调性,求出分段函数的最大值即可求解.【小问1详解】解:由题意,总成本,因为销售收入满足,所以利润函数;小问2详解】解:当时,因为函数单调递减,所以万元;当时,函数,所以当时,有最大值为13(万元).所以当工厂生产4万件产品时,可使盈利最多为13万元.19、(Ⅰ);(Ⅱ)最大值为1,最小值为0.【解析】(Ⅰ)由图象可得,从而得可得,再根据函数图象过点,可求得,故可得函数的解析式.(Ⅱ)根据的范围得到的范围,得到的范围后可得的范围,由此可得函数的最值试题解析:(Ⅰ)由图像可知,,∴,∴.∴又点在函数的图象上,∴,,∴,,又,∴∴的解析式是(Ⅱ)∵,∴∴,∴,∴当时,函数取得最大值为1;当时,函数取得最小值为0点睛:根据图象求解析式y=Asin(ωx+φ)的方法(1)根据函数图象的最高点或最低点可求得A;(2)ω由周期T确定,即先由图象得到函数的周期,再求出T(3)φ的求法通常有以下两种:①代入法:把图象上的一个已知点代入解析式(此时,A,ω,B已知)求解即可,此时要注意交点在上升区间还是下降区间②五点法:确定φ值时,往往以寻找“五点法”中的零点作为突破口,具体如下:“第一点”(即图象上升时与x轴的交点中距原点最近的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”为ωx+φ=20、(1)或;(2)证明见解析【解析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解.综上,对任意的,方程都有解21、(1)(写出开区间亦可);(2);(3).【解析】(1)根据单调性的定义结合奇偶性可得解;(2)令,问题转化为“”为真命题,根据基本不等式找函数的最小值即可;(3)当时,,记,若函数在上的最大值为,分和,结合对数函数的单调性列式求解即可.【详解】(1)函数的增区间为(写出开区间亦可);理由:,为偶函数,任取,,所以的增区间为.(2),令,当且仅当时取“”,“”为真命题可转化为“”为真命题,因为,当且仅当时取“”,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中英语教学管理创新:数字化赋能下的教师激励机制探索教学研究课题报告
- 初中生数字化学习过程中的学习氛围与学习成效的关系研究教学研究课题报告
- 2025年内江职业技术学院马克思主义基本原理概论期末考试参考题库
- 2025年安阳工学院马克思主义基本原理概论期末考试参考题库
- 2025年湖北黄冈应急管理职业技术学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年西北电业职工大学马克思主义基本原理概论期末考试笔试真题汇编
- 2024年漳州城市职业学院马克思主义基本原理概论期末考试笔试题库
- 2025年齐鲁师范学院马克思主义基本原理概论期末考试真题汇编
- 2025年湖北医药学院药护学院马克思主义基本原理概论期末考试笔试真题汇编
- 2024年长治医学院马克思主义基本原理概论期末考试真题汇编
- 2025-2026学年统编版二年级语文上册期末质量检测卷(含答案)
- 2025年学法减分试题及答案
- 2025年德州乐陵市市属国有企业公开招聘工作人员(6人)参考笔试题库及答案解析
- 2023年06月辽宁大连教育学院选聘专业技术人员19人笔试题库含答案详解析
- 新疆地方史期末测试附有答案附有答案
- 五年级道德与法治上册知识点归纳整理
- GB/T 3079-1993合金结构钢丝
- GB/T 29022-2021粒度分析动态光散射法(DLS)
- 水电基础知识培训(一)
- 色盲的基因治疗课件
- JJG 818-2018磁性、电涡流式覆层厚度测量仪-(高清现行)
评论
0/150
提交评论