安徽省铜陵市浮山中学等重点名校2026届数学高一上期末联考试题含解析_第1页
安徽省铜陵市浮山中学等重点名校2026届数学高一上期末联考试题含解析_第2页
安徽省铜陵市浮山中学等重点名校2026届数学高一上期末联考试题含解析_第3页
安徽省铜陵市浮山中学等重点名校2026届数学高一上期末联考试题含解析_第4页
安徽省铜陵市浮山中学等重点名校2026届数学高一上期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省铜陵市浮山中学等重点名校2026届数学高一上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是三角形的一个内角,且,则的值是()A. B.C.或 D.不存在2.已知全集,,,则等于()A. B.C. D.3.函数在单调递减,且为奇函数.若,则满足的的取值范围是().A. B.C. D.4.在中,,.若点满足,则()A. B.C. D.5.已知函数,则()A. B.3C. D.6.设,,下列图形能表示从集合A到集合B的函数图像的是A. B.C. D.7.植物研究者在研究某种植物1-5年内的植株高度时,将得到的数据用下图直观表示.现要根据这些数据用一个函数模型来描述这种植物在1-5年内的生长规律,下列函数模型中符合要求的是()A.(且)B.(,且)C.D.8.与终边相同的角的集合是A. B.C. D.9.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.10.函数y=sin2x的图象可能是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.过点,的直线的倾斜角为___________.12.当时,函数的值总大于,则的取值范围是________13.若角的终边经过点,则___________14.函数的反函数为___________.15.已知是幂函数,且在区间是减函数,则m=_____________.16.若函数部分图象如图所示,则此函数的解析式为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在一个周期内的图象如图所示.(1)求函数的最小正周期T及的解析式;(2)求函数的对称轴方程及单调递增区间;(3)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图像,若在上有两个解,求a的取值范围.18.已知函数(1)求函数的单调递减区间;(2)若关于的方程有解,求的取值范围19.已知平面直角坐标系内四点,,,.(1)判断的形状;(2)A,B,C,D四点是否共圆,并说明理由.20.已知函数(1)求函数的最小正周期;(2)将函数的图象向左平移个单位长度得到函数的图象,若关于的方程在上有2个不等的实数解,求实数的取值范围21.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度之间的函数关系是(且),若牛奶放在0℃的冰箱中,保鲜时间是200小时,而在1℃的温度下则是160小时,而在2℃的温度下则是128小时.(1)写出保鲜时间关于储藏温度(℃)的函数解析式;(2)利用(1)的结论,若设置储藏温度为3℃的情况下,某人储藏一瓶牛奶的时间为90至100小时之间,则这瓶牛奶能否正常饮用?(说明理由)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由诱导公式化为,平方求出,结合已知进一步判断角范围,判断符号,求出,然后开方,进而求出的值,与联立,求出,即可求解.【详解】,平方得,,是三角形的一个内角,,,,.故选:B【点睛】本题考查诱导公式化简,考查同角间的三角函数关系求值,要注意,三者关系,知一求三,属于中档题.2、D【解析】利用补集和并集的定义即可得解.【详解】,,,,,.故选:D.【点睛】本题主要考查集合的基本运算,熟练掌握补集和并集的定义是解决本题的关键,属于基础题.3、D【解析】由已知中函数的单调性及奇偶性,可将不等式化为,解得答案【详解】解:由函数为奇函数,得,不等式即为,又单调递减,所以得,即,故选:D.4、A【解析】,故选A5、D【解析】根据分段函数的解析式,令代入先求出,进而可求出的结果.【详解】解:,则令,得,所以.故选:D.6、D【解析】从集合A到集合B的函数,即定义域是A,值域为B,逐项判断即可得出结果.【详解】因为从集合A到集合B的函数,定义域是A,值域为B;所以排除A,C选项,又B中出现一对多的情况,因此B不是函数,排除B.故选D【点睛】本题主要考查函数图像,能从图像分析函数的定义域和值域即可,属于基础题型.7、B【解析】由散点图直接选择即可.【详解】解:由散点图可知,植物高度增长越来越缓慢,故选择对数模型,即B符合.故选:B.8、D【解析】根据终边相同的角定义的写法,直接写出与角α终边相同的角,得到结果【详解】根据角的终边相同的定义的写法,若α=,则与角α终边相同的角可以表示为k•360°(k∈Z),即(k∈Z)故选D【点睛】本题考查与角α的终边相同的角的集合的表示方法,属于基础题.9、B【解析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】设直线的倾斜角为,求出直线的斜率即得解.【详解】解:设直线的倾斜角为,由题得直线的斜率为,因为,所以.故答案为:12、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,13、【解析】根据定义求得,再由诱导公式可求解.【详解】角的终边经过点,则,所以.故答案为:.14、【解析】由题设可得,即可得反函数.【详解】由,可得,∴反函数为.故答案为:.15、【解析】根据幂函数系数为1,得或,代入检验函数单调性即可得解.【详解】由是幂函数,可得,解得或,当时,在区间是减函数,满足题意;当时,在区间是增函数,不满足题意;故.故答案为:.16、.【解析】由周期公式可得,代入点解三角方程可得值,进而可得解析式.【详解】由题意,周期,解得,所以函数,又图象过点,所以,得,又,所以,故函数的解析式为.故答案为:.【点睛】本题考查三角函数解析式的求解,涉及系数的意义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)对称轴为:,增区间为:;(3).【解析】(1)根据题意求出A,函数的周期,进而求出,再代入特殊点的坐标求得解析式;(2)结合函数的图象即可求出函数的对称轴,然后结合正弦函数的单调性求出的增区间;(3)根据题意先求出的解析式,进而作出函数的图象,然后通过数形结合求得答案.【小问1详解】由题意A=1,,则,所以,又因为图象过点,所以,而,则,于是.【小问2详解】结合图象可知,函数的对称轴为:,令,即函数增区间为:.【小问3详解】的图象向右平移个单位长度得到:,于是,如图所示:因为在上有两个解,所以.18、(1);(2).【解析】(1)由二倍角正余弦公式、辅助角公式可得,根据正弦函数的性质,应用整体法求单调减区间.(2)由正弦型函数的性质求值域,结合题设方程有解,即可确定参数范围.【小问1详解】,令,解得,所以函数的单调递减区间是.【小问2详解】∵,∴,又有解,所以m的取值范围19、(1)是等腰直角三角形(2)A,B,C,D四点共圆;理由见解析【解析】(1)利用两点间距离公式可求得,再利用斜率公式可得到,即可判断三角形形状;(2)由(1)先求得的外接圆,再判断点是否在圆上即可【详解】解:(1),,,又,,即,∴是等腰直角三角形(2)A,B,C,D四点共圆;由(1),设的外接圆的圆心为,则,即,解得,此时,所以的外接圆的方程为,将D点坐标代入方程得,即D点在的外接圆上.∴A,B,C,D四点共圆【点睛】本题考查两点间距离公式的应用,考查斜率公式的应用,考查三角形的外接圆,考查圆的方程,考查运算能力20、(1)(2)【解析】(1)利用三角恒等变换化简,由周期公式求解即可;(2)先求出的解析式,再把所求转化为方程在上有2个不等的实数解,令,根据图象即可求得结论【小问1详解】解:,即,所以函数的最小正周期为【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论