吉林省吉林市第二中学2026届高一数学第一学期期末统考模拟试题含解析_第1页
吉林省吉林市第二中学2026届高一数学第一学期期末统考模拟试题含解析_第2页
吉林省吉林市第二中学2026届高一数学第一学期期末统考模拟试题含解析_第3页
吉林省吉林市第二中学2026届高一数学第一学期期末统考模拟试题含解析_第4页
吉林省吉林市第二中学2026届高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市第二中学2026届高一数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直三棱柱的顶点都在球上,且,,,则此直三棱柱的外接球的表面积是()A. B.C. D.2.当时,若,则的值为A. B.C. D.3.设,,,则a,b,c的大小关系是()A. B.C. D.4.如图,已知的直观图是一个直角边长是1的等腰直角三角形,那么的面积是A. B.C.1 D.5.如图,一个水平放置的平面图形的直观图是边长为2的菱形,且,则原平面图形的周长为()A. B.C. D.86.已知正三棱锥P—ABC(顶点在底面的射影是底面正三角形的中心)的侧面是顶角为30°腰长为2的等腰三角形,若过A的截面与棱PB,PC分别交于点D和点E,则截面△ADE周长的最小值是()A. B.2C. D.27.平行线与之间的距离等于()A. B.C. D.8.已知函数,将的图象上所有点沿x轴平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,且函数的图象关于y轴对称,则的最小值是()A. B.C. D.9.下列四组函数中,表示同一个函数的一组是()A.,B.,C.,D.,10.已知命题:,,那么命题为()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.若是第三象限的角,则是第________象限角;12.过正方体的顶点作直线,使与棱、、所成的角都相等,这样的直线可以作_________条.13.已知函数,若函数的最小值与函数的最小值相等,则实数的取值范围是__________14.在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________15.用表示函数在闭区间上的最大值.若正数满足,则的最大值为__________16.已知角的终边过点(1,-2),则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,若在上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断函数的单调性,并求出的最小值.18.已知函数.(1)求最小正周期;(2)当时,求的值域.19.我国是世界上人口最多的国家,1982年十二大,计划生育被确定为基本国策.实行计划生育,严格控制人口增长,坚持少生优生,这是直接关系到人民生活水平的进一步提高,也是造福子孙后代的百年大计.(1)据统计1995年底,我国人口总数约12亿,如果人口的自然年增长率控制在1%,到2020年底我国人口总数大约为多少亿(精确到亿);(2)当前,我国人口发展已经出现转折性变化,2015年10月26日至10月29日召开的党的十八届五中全会决定,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动.这是继2013年,十八届三中全会决定启动实施“单独二孩”政策之后的又一次人口政策调整.据统计2015年中国人口实际数量大约14亿,若实行全面两孩政策后,预计人口年增长率实际可达1%,那么需经过多少年我国人口可达16亿.(参考数字:,,,)20.已知函数(1)证明:函数在上是增函数;(2)求在上的值域21.在①是函数图象的一条对称轴,②函数的最大值为2,③函数图象与y轴交点的纵坐标是1这三个条件中选取两个补充在下面题目中,并解答已知函数,______(1)求的解析式;(2)求在上的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】设点为外接圆的圆心,根据,得到是等边三角形,求得外接圆的半径r,再根据直三棱柱的顶点都在球上,由求得,直三棱柱的外接球的半径即可.【详解】如图所示:设点为外接圆的圆心,因为,所以,又,所以等边三角形,所以,又直三棱柱的顶点都在球上,所以外接球的半径为,所以直三棱柱的外接球的表面积是,故选:C2、A【解析】分析:首先根据题中所给的角的范围,求得相应的角的范围,结合题中所给的角的三角函数值,结合角的范围,利用同角三角函数的平方关系式,求得相应的三角函数值,之后应用诱导公式和同角三角函数商关系,求得结果.详解:因为,所以,所以,因为,所以,所以,所以,所以答案是,故选A.点睛:该题考查的是有关三角恒等变换问题,涉及到的知识点有同角三角函数关系式中的平方关系和商关系,以及诱导公式求得结果.3、C【解析】先判断,再判断得到答案.【详解】;;;,即故选:【点睛】本题考查了函数值的大小比较,意在考查学生对于函数性质的灵活运用.4、D【解析】根据斜二测画法的基本原理,将平面直观图与还原为原几何图形,利用三角形面积公式可得结果.【详解】平面直观图与其原图形如图,直观图是直角边长为的等腰直角三角形,还原回原图形后,边还原为长度不变,仍为,直观图中的在原图形中还原为长度,且长度为,所以原图形的面积为,故选D.【点睛】本题主要考查直观图还原几何图形,属于简单题.利用斜二测画法作直观图,主要注意两点:一是与轴平行的线段仍然与与轴平行且相等;二是与轴平行的线段仍然与轴平行且长度减半.5、B【解析】利用斜二测画法还原直观图即得.【详解】由题可知,∴,还原直观图可得原平面图形,如图,则,∴,∴原平面图形的周长为.故选:B.6、D【解析】可以将三棱锥侧面展开,将计算周长最小值转化成计算两点间距离最小值,解三角形,即可得出答案.【详解】将三棱锥的侧面展开,如图则将求截面周长的最小值,转化成计算的最短距离,结合题意可知=,,所以,故周长最小值为,故选D.【点睛】本道题目考查了解三角形的知识,可以将空间计算周长最小值转化层平面计算两点间的最小值,即可.7、C【解析】,故选8、B【解析】先将解析式化简后,由三角函数图象变换得到的解析式后求解.【详解】若向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,由题意得,的最小值为;若向右平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,同理得的最小值为,故选:B9、B【解析】根据相等函数的判定方法,逐项判断,即可得出结果.【详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错;B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确;C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错;D选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错.故选:B.10、B【解析】利用含有一个量词的命题的否定的定义判断.【详解】因为命题:,是全称量词命题,所以其否定是存在量词命题,即,,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、一或三【解析】根据的范围求得的范围,从而确定正确答案.【详解】依题意,,,所以当为奇数时,在第三象限;当为偶数时,在第一象限.故答案:一或三12、【解析】将小正方体扩展成4个小正方体,根据直线夹角的定义即可判断出符合条件的条数【详解】解:设ABCD﹣A1B1C1D1边长为1第一条:AC1是满足条件的直线;第二条:延长C1D1到C1且D1C2=1,AC2是满足条件的直线;第三条:延长C1B1到C3且B1C3=1,AC3是满足条件的直线;第四条:延长C1A1到C4且C4A1,AC4是满足条件的直线故答案为4【点睛】本题考查满足条件的直线条数的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查分类与整合思想,是基础题13、【解析】由二次函数的知识得,当时有.令,则,.结合二次函数可得要满足题意,只需,解不等式可得所求范围【详解】由已知可得,所以当时,取得最小值,且令,则,要使函数的最小值与函数的最小值相等,只需满足,解得或.所以实数的取值范围是故答案为【点睛】本题考查二次函数最值的问题,求解此类问题时要结合二次函数图象,即抛物线的开口方向和对称轴与区间的关系进行求解,同时注意数形结合在解题中的应用,考查分析问题和解决问题的能力,属于基础题14、【解析】由题意,∴A(3,2)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,∴圆上不相同的两点为B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中点为圆心C(3,4),半径为1,∴⊙C的方程为(x﹣3)2+(y﹣4)2=4过P,M,N的圆的方程为x2+y2=m2,∴两圆外切时,m的最大值为,两圆内切时,m的最小值为,故答案为[3,7]15、【解析】对分类讨论,利用正弦函数的图象求出和,代入,解出的范围,即可得解.【详解】当,即时,,,因为,所以不成立;当,即时,,,不满足;当,即时,,,由得,得,得;当,即时,,,由得,得,得,得;当,即时,,,不满足;当,即时,,,不满足.综上所述:.所以得最大值为故答案为:【点睛】关键点点睛:对分类讨论,利用正弦函数的图象求出和是解题关键.16、【解析】由三角函数的定义以及诱导公式求解即可.【详解】的终边过点(1,-2),故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】解:(1)函数的对称轴为直线,而∴在上最小值为,①当时,即时,②当2时,即时,,(2)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.18、(1)(2)【解析】(1)根据辅角公式可得,由此即可求出的最小正周期;(2)根据,可得,在结合正弦函数的性质,即可求出结果.【小问1详解】解:所以最小正周期为;【小问2详解】,,的值域为.19、(1)15;(2)14年.【解析】(1)先判定到2020年底历经的总年数,再利用增长率列式计算即可;(2)设经过x年达16亿,列关系,解不等式即得结果.【详解】解:(1)由1995年底到2020年底,经过25年,由题知,到2020年底我国人口总数大约为(亿);(2)设需要经过x年我国人口可达16亿,由题知,两边取对数得,,即有,则需要经过14年我国人口可达16亿.20、(1)证明见解析(2)【解析】(1)设,化简计算并判断正负即可得出;(2)根据单调性即可求解.【小问1详解】设,,因为,所以,,则,即,所以函数在上是增函数;【小问2详解】由(1)可知,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论