版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区贵港市覃塘高级中学2026届高一数学第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的零点在区间内,则()A.4 B.3C.2 D.12.点直线中,被圆截得的最长弦所在的直线方程为()A. B.C. D.3.中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是℃,环境温度是℃,则经过分钟后物体的温度℃将满足,其中是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,℃的水应大约冷却()分钟冲泡该绿茶(参考数据:,)A.3 B.3.6C.4 D.4.84.已知集合0,,1,,则A. B.1,C.0,1, D.5.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1:3,这截面把圆锥母线分成的两段的比是(
)A.1:3 B.1:()C.1:9 D.6.已知函数在区间上是增函数,则的取值范围是()A. B.C. D.7.表示不超过x的最大整数,例如,.若是函数的零点,则()A.1 B.2C.3 D.48.下列函数中,与函数有相同图象的一个是A. B.C. D.9.已知函数f(x)=log3(x+1),若f(a)=1,则a等于()A.0 B.1C.2 D.310.已知,,为正实数,满足,,,则,,的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.__________.12.已知函数(且),若对,,都有.则实数a的取值范围是___________13.已知函数的图象如图,则________14.已知为的外心,,,,且;当时,______;当时,_______.15.已知正数x,y满足,则的最小值为_________16.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某网上电子商城销售甲、乙两种品牌的固态硬盘,甲、乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲、乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:型号甲乙首次出现故障的时间x(年)硬盘数(个)212123假设甲、乙两种品牌的固态硬盘首次出现故障相互独立.(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;(2)某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即)的概率.18.已知函数,.(1)求函数图象的对称轴的方程;(2)当时,求函数的值域;(3)设,存在集合,当且仅当实数,且在时,不等式恒成立.若在(2)的条件下,恒有(其中),求实数的取值范围.19.化简求值:(1)已知,求的值;(2)20.已知函数,,(1)求函数的值域;(2)若对任意的,都有恒成立,求实数a的取值范围;(3)若对任意的,都存在四个不同的实数,,,,使得,其中,2,3,4,求实数a的取值范围21.已知(1)若a=2,求(2)已知全集,若,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据零点存在性定理即可判断出零点所在的区间.【详解】因为,,所以函数在区间内有零点,所以.故选:B.2、A【解析】要使得直线被圆截得的弦长最长,则直线必过圆心,利用斜率公式求得斜率,结合点斜式方程,即可求解.【详解】由题意,圆,可得圆心坐标为,要使得直线被圆截得的弦长最长,则直线必过圆心,可得直线的斜率为,所以直线的方程为,即所求直线的方程为.故选:A.3、B【解析】根据题意求出k的值,再将θ=80℃,=100℃,=20℃代入即可求得t的值.【详解】由题可知:,冲泡绿茶时水温为80℃,故.故选:B.4、A【解析】直接利用交集的运算法则化简求解即可【详解】集合,,则,故选A【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.5、B【解析】平行于底面的平面截圆锥可以得到一个小圆锥,利用它的底面与原圆锥的底面的面积之比得到相应的母线长之比,故可得截面分母线段长所成的两段长度之比.【详解】设截面圆的半径为,原圆锥的底面半径为,则,所以小圆锥与原圆锥的母线长之比为,故截面把圆锥母线段分成的两段比是.选B.【点睛】在平面几何中,如果两个三角形相似,那么它们的面积之比为相似比的平方,类似地,在立体几何中,平行于底面的平面截圆锥所得的小圆锥与原来的圆锥的底面积之比为,体积之比为(分别为小圆锥的底面半径和原圆锥的底面半径).6、A【解析】根据二次函数的单调区间及增减性,可得到,求解即可.【详解】函数,开口向下,对称轴为函数在区间上是增函数,所以,解得,所以实数a的取值范围是.故选:A7、B【解析】利用零点存在定理得到零点所在区间求解.【详解】因为函数在定义域上连续的增函数,且,又∵是函数的零点,∴,所以,故选:B.8、B【解析】逐一考查选项中的函数与所给的函数是否为同一个函数即可确定其图象是否相同.【详解】逐一考查所给的选项:A.,与题中所给函数的解析式不一致,图象不相同;B.,与题中所给函数的解析式和定义域都一致,图象相同;C.的定义域为,与题中所给函数的定义域不一致,图象不相同;D.的定义域为,与题中所给函数的定义域不一致,图象不相同;故选B.【点睛】本题主要考查函数相等的概念,需要同时考查函数的定义域和函数的对应关系,属于中等题.9、C【解析】根据,解对数方程,直接得到答案.【详解】∵,∴a+1=3,∴a=2.故选:C.点睛】本题考查了解对数方程,属于基础题.10、D【解析】设,,,,在同一坐标系中作出函数的图象,可得答案.【详解】设,,,在同一坐标系中作出函数的图象,如图为函数的交点的横坐标为函数的交点的横坐标为函数的交点的横坐标根据图像可得:故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】应用诱导公式化简求值即可.【详解】原式.故答案为:1.12、【解析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:13、8【解析】由图像可得:过点和,代入解得a、b【详解】由图像可得:过点和,则有:,解得∴故答案为:814、(1).(2).【解析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.【详解】当时,由可得,,所以,为外接圆的直径,则,此时;如下图所示:取的中点,连接,则,所,,同理可得.所以,,整理得,解得,,,因此,.故答案为:;.【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.15、8【解析】将等式转化为,再解不等式即可求解【详解】由题意,正实数,由(时等号成立),所以,所以,即,解得(舍),,(取最小值)所以的最小值为.故答案为:16、【解析】计算出等边的边长,计算出由弧与所围成的弓形的面积,进而可求得勒洛三角形的面积.【详解】设等边三角形的边长为,则,解得,所以,由弧与所围成的弓形的面积为,所以该勒洛三角形的面积.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由频率表示概率即可求出;(2)先分别求出从甲、乙两种品牌随机抽取一个,首次出现故障发生在保修期的第3年的概率,即可求出恰有一个首次出现故障发生在保修期的第3年的概率.【详解】解:(1)在图表中,甲品牌的个样本中,首次出现故障发生在保修期内的概率为:,设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内为事件,利用频率估计概率,得,即从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内的概率为:;(2)设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,从该商城销售的乙品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,利用频率估计概率,得:,则,某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,恰有一个首次出现故障发生在保修期的第3年的概率为:.【点睛】关键点点睛:本题解题的关键是利用频率表示概率.18、(1);(2);(3).【解析】(1)利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数的对称性得解;(2)令,换元,化函数为的二次函数,求出,由此可值域;(3)由题意利用分离参数法、换元法、基本不等式先求出集合,根据(2)中范围得出的范围,再由可得的范围【详解】解:(1)令,得所以函数图象的对称轴方程为:(2)由(1)知,,当时,,∴,,即令,则,,由得,∴当时,有最小值,当时,有最大值1,所以当时,函数的值域为(3)当,不等式恒成立,因为时,,,所以,令,则,所以又,当且仅当即时取等号而,所以,即,所以又由(2)知,,当时,,所以,要使恒成立,只须使,故的取值范围是【点睛】关键点点睛:本题考查两角和的正弦公式,三角函数的对称性,换元法求三角函数的值域,考查不等式恒成立问题,在同时出现和的函数中常常设换元转化为二次函数,再结合二次函数性质求解.不等式恒成立问题仍然采用分离参数转化为求函数的最值19、(1)(2)【解析】(1)先用诱导公式化简,再用同角三角函数的平方关系求解;(2)先用诱导公式化简,再代入特殊三角函数值计算即可.【小问1详解】;【小问2详解】20、(1);(2);(3)【解析】(1)利用基本函数的单调性即得;(2)由题可得恒成立,再利用基本不等式即求;(3)由题意可知对任意一个实数,方程有四个根,利用二次函数的图像及性质可得,即求.【小问1详解】∵函数,,所以函数在上单调递增,∴函数的值域为;【小问2详解】∵对任意的,都有恒成立,∴,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年南宁市武鸣区两江镇中心卫生院编外工作人员招聘备考题库及答案详解参考
- 2026年中国石化销售股份有限公司山东滨州邹平石油分公司招聘备考题库及完整答案详解1套
- 2026年南海高新区塘联小学代课教师招聘备考题库及完整答案详解1套
- 2026年天津滨海新区建设投资集团面向社会公开招聘27人备考题库及答案详解参考
- 2026年扬州市江都妇幼保健院公开招聘编外合同制专业技术人员备考题库及一套答案详解
- 2026年度旅游工作自评报告总结
- 2026年工会教育培训方案
- 高危孕产妇识别与救治技术培训计划和方案
- 安全b证继续教育在线考试试题及答案
- 锅炉、压力容器事故应急演练方案
- 抢劫案件侦查课件
- 2025中国企业软件出海报告
- 2025年大学《农药化肥-农药残留检测》考试模拟试题及答案解析
- DB14T2163-2020 《信息化项目软件运维费用测算指南》
- 二氧化碳爆破施工技术方案
- 安全生产工作成效总结
- 16《我的叔叔于勒》公开课一等奖创新教学设计
- 骨科备皮课件
- 商品有机肥施肥施工方案
- 2025至2030中国酒店行业市场现状分析及有效策略与实施路径评估报告
- 黑龙江省安全文明施工费管理办法
评论
0/150
提交评论