版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上海外国语大学附属上外高中2026届高一数学第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,若,则a的取值范围是()A. B.C. D.2.已知函数,则()A.5 B.2C.0 D.13.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与4.若,则有()A.最大值 B.最小值C.最大值2 D.最小值25.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视图是一个半圆内切于边长为的正方形.若该机器零件的表面积为,则的值为A.4 B.2C.8 D.66.已知定义在上的奇函数满足,且当时,,则()A. B.C. D.7.4×100米接力赛是田径运动中的集体项目.一根小小的木棒,要四个人共同打造一个信念,一起拼搏,每次交接都是信任的传递.甲、乙、丙、丁四位同学将代表高一年级参加校运会4×100米接力赛,教练组根据训练情况,安排了四人的交接棒组合.已知该组合三次交接棒失误的概率分别是p1,p2,A.p1pC.1-p18.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p39.已知函数,则不等式的解集为()A. B.C. D.10.已知,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(,)的部分图象如图所示,则的值为12.已知集合,若,则_______.13.函数的最大值是__________14.已知向量,若,则实数的值为______15.的边的长分别为,且,,,则__________.16.已知函数的定义域为R,,且函数为偶函数,则的值为________,函数是________函数(从“奇”、“偶”、“非奇非偶”、“既奇又偶”中选填一个).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知一扇形的圆心角为,所在圆的半径为.(1)若,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积?18.已知函数的最小值正周期是(1)求的值;(2)求函数的最大值,并且求使取得最大值的x的集合19.已知函数为定义在R上的奇函数(1)求实数m,n的值;(2)解关于x的不等式20.已知.(1)若,且,求的值.(2)若,且,求的值.21.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与的夹角为钝角,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据,由集合A,B有公共元素求解.【详解】集合,因为,所以集合A,B有公共元素,所以故选:D2、C【解析】由分段函数,选择计算【详解】由题意可得.故选:C.【点睛】本题考查分段函数的求值,属于简单题3、B【解析】根据两个函数的定义域相同且对应关系也相同,逐项判断即可【详解】由于函数的定义域为,函数的定义域为,所以与不是同一个函数,故A错误;由于的定义域为,函数且定义域为,所以与是同一函数,故B正确;在函数中,,解得或,所以函数的定义域为,在函数中,,解得,所以的定义域为,所以与不是同一函数,故C错误;由于函数的定义域为,函数定义域为为,所以与不是同一函数,故D错误;故选:B.4、D【解析】构造基本不等式即可得结果.【详解】∵,∴,∴,当且仅当,即时,等号成立,即有最小值2.故选:D.【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.5、A【解析】几何体为一个正方体与四分之一个球的组合体,所以表面积为,选A点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)旋转体的表面积问题注意其侧面展开图的应用6、C【解析】先推导出函数的周期为,可得出,然后利用函数的奇偶性结合函数的解析式可计算出结果.【详解】函数是上的奇函数,且,,,所以,函数的周期为,则.故选:C.【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题.7、C【解析】根据对立事件和独立事件求概率的方法即可求得答案.【详解】由题意,三次交接棒不失误的概率分别为:1-p1,1-故选:C.8、A【解析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.9、D【解析】由题可得函数为偶函数,且在上为增函数,可得,然后利用余弦函数的性质即得.【详解】∵函数,定义域为R,∴,∴函数为偶函数,且在上为增函数,,∵,∴,即,又,∴.故选:D.10、C【解析】利用不等式的性质和充要条件的判定条件进行判定即可.【详解】因为,,所以成立;又,,所以成立;所以当时,“”是“”的充分必要条件.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;12、【解析】根据求得,由此求得.【详解】由于,所以,所以.故答案为:13、【解析】由题意得,令,则,且故,,所以当时,函数取得最大值,且,即函数的最大值为答案:点睛:(1)对于sinα+cosα,sinαcosα,sinα-cosα这三个式子,当其中一个式子的值知道时,其余二式的值可求,转化的公式为(sinα±cosα)2=1±2sinαcosα(2)求形如y=asinxcosx+b(sinx±cosx)+c的函数的最值(或值域)时,可先设t=sinx±cosx,转化为关于t的二次函数求最值(或值域)14、;【解析】由题意得15、【解析】由正弦定理、余弦定理得答案:16、①.7②.奇【解析】利用函数的奇偶性以及奇偶性定义即可求解.【详解】函数为偶函数,由,则,所以,所以,,定义域为,定义域关于原点对称.因为,所以,所以函数为奇函数.故答案为:7;奇三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】(1)根据弧长的公式和扇形的面积公式即可求扇形的弧长及该弧所在的弓形的面积;(2)根据扇形的面积公式,结合基本不等式即可得到结论【详解】(1)设弧长为l,弓形面积为S弓,则α=90°=,R=10,l=×10=5π(cm),S弓=S扇-S△=×5π×10-×102=25π-50(cm2).(2)扇形周长C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α·=·=·≤.当且仅当α2=4,即α=2时,扇形面积有最大值.【点睛】本题主要考查扇形的弧长和扇形面积的计算,要求熟练掌握相应的公式,考查学生的计算能力18、(1);(2)最大值为,此时.【解析】(1)利用二倍角公式以及辅助角公式可得,再由即可求解.(2)由(1)知,,令,即可求解.【详解】(1)由题设,函数的最小正周期是,可得,所以;(2)由(1)知,当,即时,取得最大值1,所以函数的最大值为19、(1)(2)答案详见解析【解析】(1)利用以及求得的值.(2)利用函数的奇偶性、单调性化简不等式,对进行分类讨论,由此求得不等式的解集.【小问1详解】由于是定义在R上的奇函数,所以,所以,由于是奇函数,所以,所以,即,所以.【小问2详解】由(1)得,任取,,由于,所以,,所以在上递增.不等式,即,,,,,,①.当时,①即,不等式①的解集为空集.当时,不等式①的解集为.当时,不等式①的解集为.20、(1)或;(2).【解析】(1)利用诱导公式结合化简,再解方程结合即可求解;(2)结合(1)中将已知条件化简可得,再由同角三角函数基本关系即可求解.【小问1详解】.所以,因为,则,或.【小问2详解】由(1)知:,所以,即,所以,所以,即,可得或.因为,则,所以.所以,故.21、(1);(2)且.【解析】(1)根据数量积运算以及结果,结合模长,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026春招:医疗器械试题及答案
- 2026春招:信息安全顾问真题及答案
- 2026春招:五粮液笔试题及答案
- 传染病防控与个人卫生知识
- 护理护理教学与科研创新
- 货柜安全检查培训课件
- 2026年广东环境保护工程职业学院高职单招职业适应性测试备考题库带答案解析
- 儿保科服务流程优化报告
- 医疗人员急救培训与考核
- 医疗机构人才队伍建设
- 《养老机构认知障碍老年人照护指南》
- 2026届四川成都七中高三上学期11月半期考数学试题及答案
- 颅内肿瘤切除术手术配合
- 2025年八年级历史时间轴梳理试卷(附答案)
- 2025年党务工作者试题及答案
- 2025年国家开放大学(电大)《工程项目管理》期末考试复习试题及答案解析
- 2025年水域救援考试题库及答案
- 农贸市场摊位租赁合同
- 2025年生物饲料添加剂研发成果的饲料添加剂研发团队研发成果转化报告
- 《TCSUS69-2024智慧水务技术标准》
- 智能食品机器人柔性加工-洞察及研究
评论
0/150
提交评论