版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
文山市重点中学2026届数学高二上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1 B.2C.-1 D.-22.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个3.执行如图所示的算法框图,则输出的结果是()A. B.C. D.4.已知抛物线上的点到其准线的距离为,则()A. B.C. D.5.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对6.如图,在平行六面体中,设,,,用基底表示向量,则()A. B.C. D.7.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.8.已知双曲线的左、右焦点分别为,半焦距为c,过点作一条渐近线的垂线,垂足为P,若的面积为,则该双曲线的离心率为()A.3 B.2C. D.9.已知直线和圆,则“”是“直线与圆相切”的().A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件10.第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点和短轴一端点分别向内层椭圆引切线,(如图),且两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.11.总体由编号为的30个个体组成.利用所给的随机数表选取6个个体,选取的方法是从随机数表第1行的第3列和第4列数字开始,由左到右一次选取两个数字,则选出来的第5个个体的编号为()A.20 B.26C.17 D.0312.在正三棱锥中,,且,M,N分别为BC,AD的中点,则直线AM和CN夹角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.为和的等差中项,则_____________.14.若椭圆的焦点在轴上,且长轴长是短轴长的2倍,则______.15.如图是用斜二测画法画出水平放置的正三角形ABC的直观图,其中,则三角形的面积为______.16.已知数列的前n项和为,则取得最大值时n的值为__________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和为,,且,,(1)若(i)求;(ii)求证数列成等差数列(2)若数列为递增数列,且,试求满足条件的所有正整数的值18.(12分)“中山桥”是位于兰州市中心,横跨黄河之上的一座百年老桥,如图①,桥上有五个拱形桥架紧密相连,每个桥架的内部有一个水平横梁和八个与横梁垂直的立柱,气势宏伟,素有“天下黄河第一桥”之称.如图②,一个拱形桥架可以近似看作是由等腰梯形和其上方的抛物线(部分)组成,建立如图所示的平面直角坐标系,已知,,,,立柱.(1)求立柱及横梁的长;(2)求抛物线的方程和桥梁的拱高.19.(12分)已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.20.(12分)已知函数(1)求函数的图象在点处的切线方程;(2)求函数的极值21.(12分)如图,在正方体中,分别是,的中点.求证:(1)平面;(2)平面平面.22.(10分)浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7门科目中自选3门参加考试.下面是某校高一200名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示(1)求频率分布直方图中的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D2、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.3、B【解析】列举出循环的每一步,利用裂项相消法可求得输出结果.【详解】第一次循环,不成立,,;第二次循环,不成立,,;第三次循环,不成立,,;以此类推,最后一次循环,不成立,,.成立,跳出循环体,输出.故选:B.4、C【解析】首先根据抛物线的标准方程的形式,确定的值,再根据焦半径公式求解.【详解】,,因为点到的准线的距离为,所以,得故选:C5、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D6、B【解析】直接利用空间向量基本定理求解即可【详解】因为在平行六面体中,,,,所以,故选:B7、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B8、D【解析】根据给定条件求出,再计算面积列式计算作答.【详解】依题意,点,由双曲线对称性不妨取渐近线,即,则,令坐标原点为O,中,,又点O是线段的中点,因此,,则有,即,,,所以双曲线的离心率为故选:D9、B【解析】首先求出直线与圆相切时的取值,再根据充分必要条件的定义判断.【详解】若直线与圆相切,则圆心到直线的距离,则,解得,所以“”是“直线与圆相切”的充分不必要条件.故选:B【点睛】本题考查直线与圆的位置关系,充分必要条件,重点考查计算,理解能力,属于基础题型.10、B【解析】分别设内外层椭圆方程为、,进而设切线、分别为、,联立方程组整理并结合求、关于a、b、m的关系式,再结合已知得到a、b的齐次方程求离心率即可.【详解】若内层椭圆方程为,由离心率相同,可设外层椭圆方程为,∴,设切线为,切线为,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故选:B.【点睛】关键点点睛:根据内外椭圆的离心率相同设椭圆方程,并写出切线方程,联立方程结合及已知条件,得到椭圆参数的齐次方程求离心率.11、D【解析】根据题目要求选取数字,在30以内的正整数符合要求,不在30以内的不合要求,舍去,与已经选取过重复的舍去,找到第5个个体的编号.【详解】已知选取方法为从第一行的第3列和第4列数字开始,由左到右一次选取两个数字,所以选取出来的数字分别为12(符合要求),13(符合要求),40(不合要求),33(不合要求),20(符合要求),38(不合要求),26(符合要求),13(与前面重复,不合要求),89(不合要求),51(不合要求),03(符合要求),故选出来的第5个个体的编号为03.故选:D12、B【解析】由题意可得两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,利用空间向量求解【详解】因为,所以两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,如图所示,因为,所以,因为M,N分别为BC,AD的中点,所以,所以,设直线AM和CN所成的角为,则,所以直线AM和CN夹角的余弦值为,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用等差中项的定义可求得结果.【详解】由等差中项的定义可得.故答案为:.14、4【解析】根据椭圆焦点在轴上方程的特征进行求解即可.【详解】因为椭圆的焦点在轴上,所以有,因为长轴长是短轴长的2倍,所以有,故答案为:415、【解析】根据直观图和平面图的关系可求出,进而利用面积公式可得三角形的面积【详解】由已知可得则故答案为:.16、①.13②.##3.4【解析】由题可得利用函数的单调性可得取得最大值时n的值,然后利用,即求.【详解】∵,∴当时,单调递减且,当时,单调递减且,∴时,取得最大值,∴.故答案为:13;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);详见解析;(2)5.【解析】(1)由题可得,由条件可依次求各项,即得;猜想,用数学归纳法证明即得;(2)设,由题可得,进而可得,结合条件即求.【小问1详解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想数列是首项,公差为的等差数列,,用数学归纳法证明:当时,,成立;假设时,等式成立,即,则时,,∴,∴当时,等式也成立,∴,∴数列是首项,公差为的等差数列.【小问2详解】设,由,,即,∴,又,,,∴,,,,,,∴,,,∴,又数列为递增数列,∴,解得,由,∴,解得.【点睛】关键点点睛:第一问的关键是由条件猜想,然后数学归纳法证明,第二问求出,,即得.18、(1),(2),【解析】(1)根据梯形的几何性质,即可求解;(2)表示出M,N的坐标,代入抛物线方程中,结合条件解得p值,继而求得拱高.【小问1详解】由题意,知,因为ABFM是等腰梯形,由对称性知:,所以,【小问2详解】由(1)知,所以点M的横坐标为-18,则N的横坐标为-(18-5)=-13.设点M,N的纵坐标分别为y1,y2,由图形,知设抛物线的方程为,,两式相减,得2p(y2-y1)=182-132=155,解得:2p=100故抛物线的方程为x2=-100y.因此,当x=-18时,所以桥梁的拱高OH=3.24+4=7.24m.19、(1)(2)【解析】(1)根据椭圆的简单几何性质知,又,写出椭圆的方程;(2)先斜截式设出直线,联立方程组,根据直线与圆锥曲线的位置关系,可得出中点为的坐标,再根据△为等腰三角形知,从而得的斜率为,求出,写出:,并计算,再根据点到直线距离公式求高,即可计算出面积【详解】(1)由已知得,,解得,又,所以椭圆的方程为(2)设直线的方程为,由得,①设、的坐标分别为,(),中点为,则,,因为是等腰△的底边,所以所以的斜率为,解得,此时方程①为解得,,所以,,所以,此时,点到直线:距离,所以△的面积考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离.【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键20、(1)(2)极大值为12,极小值-15【解析】(1)利用导数的几何意义求解即可.(2)利用导数求解极值即可.【小问1详解】,,切点为,故切线方程为,即;【小问2详解】令,得或列表:-12+0-0+单调递增12单调递减-15单调递增函数的极大值为,函数的极小值为.21、证明见解析【解析】(1)连接,根据线面平行的判定定理,即可证明结论成立;(2)连接,,先由线面平行的判定定理,得到平面,再由(1)的结果,结合面面平行的判定定理,即可证明结论成立.【详解】(1)如图,连接.∵四边形是正方形,是的中点,∴是的中点.又∵是的中点,∴.∵平面,平面,∴平面.(2)连接,,∵四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动医疗设备充电与能源管理
- 医用超声成像技术发展历程
- 2026年物联网 智慧农业精准灌溉项目评估报告
- 中医理疗改善慢性鼻炎探讨
- 医院医疗废物管理与无害化处理
- 2026年水权交易服务项目公司成立分析报告
- 医学科研科主任论科研创新与成果转化
- 医疗设备的智能化与网络化
- 医学美容纹眉技术培训
- 2026年第六代移动通信(6G)项目商业计划书
- 《小学语文六年级上册第三单元复习》课件
- 小区配电室用电安全培训课件
- 杭州余杭水务有限公司2025年度公开招聘备考题库附答案详解
- 鹿邑县2025年事业单位引进高层次人才备考题库及答案详解(新)
- 2025云南昆明巫家坝城市发展建设有限公司社会招聘14人笔试历年难易错考点试卷带答案解析
- 2025年大学(直播电商实训)管理实操试题及答案
- 医院重症医学科主任谈重症医学治疗
- 云南省2025年普通高中学业水平合格性考试地理试题
- 基础土方回填施工工艺方案
- 2025年苏州工业园区领军创业投资有限公司招聘备考题库及一套答案详解
- 天一大联考海南省2026届数学高二上期末统考试题含解析
评论
0/150
提交评论