2026届江西省赣州市南康中学高二上数学期末达标检测试题含解析_第1页
2026届江西省赣州市南康中学高二上数学期末达标检测试题含解析_第2页
2026届江西省赣州市南康中学高二上数学期末达标检测试题含解析_第3页
2026届江西省赣州市南康中学高二上数学期末达标检测试题含解析_第4页
2026届江西省赣州市南康中学高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江西省赣州市南康中学高二上数学期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的渐近线方程为A. B.C. D.2.已知是椭圆右焦点,点在椭圆上,线段与圆相切于点,且,则椭圆的离心率等于()A. B.C. D.3.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设是等差数列的前n项和,若,,则()A.26 B.-7C.-10 D.-135.设是双曲线与圆在第一象限的交点,,分别是双曲线的左,右焦点,若,则双曲线的离心率为()A. B.C. D.6.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值7.若双曲线的离心率为,则其渐近线方程为A.y=±2x B.y=C. D.8.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于59.直线是双曲线的一条渐近线,,分别是双曲线左、右焦点,P是双曲线上一点,且,则()A.2 B.6C.8 D.1010.已知抛物线,则抛物线的焦点到其准线的距离为()A. B.C. D.11.已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过F作垂直于x轴的直线与双曲线交于G、H两点,若是锐角三角形,则该双曲线的离心率e的取值范围是()A. B.C. D.12.曲线上的点到直线的最短距离是()A. B.C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立①数列是等差数列:②数列是等差数列;③注:若选择不同的组合分别解答,则按第一个解答计分14.已知数列满足,且,则______,数列的通项_____15.设函数是函数的导函数,已知,且,则使得成立的x的取值范围是_________.16.已知向量是直线l的一个方向向量,向量是平面的一个法向量,若直线平面,则实数m的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.18.(12分)已知函数.(1)求的单调递增区间;(2)求在的最大值.19.(12分)已知命题实数满足成立,命题方程表示焦点在轴上的椭圆,若命题为真,命题或为真,求实数的取值范围20.(12分)如图①,在梯形PABC中,,与均为等腰直角三角形,,,D,E分别为PA,PC的中点.将沿DE折起,使点P到点的位置(如图②),G为线段的中点.在图②中解决以下两个问题.(1)求证:平面平面;(2)若二面角为120°时,求CG与平面所成角的正弦值.21.(12分)已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程22.(10分)如图,已知平行六面体中,底面ABCD是边长为1的正方形,,,设,,(1)用,,表示,并求;(2)求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据双曲线的渐近线方程知,,故选A.2、A【解析】结合椭圆的定义、勾股定理列方程,化简求得,由此求得离心率.【详解】圆的圆心为,半径为.设左焦点为,连接,由于,所以,所以,所以,由于,所以,所以,,.故选:A3、B【解析】因但4、C【解析】直接利用等差数列通项和求和公式计算得到答案.【详解】,,解得,故.故选:C.5、B【解析】先由双曲线定义与题中条件得到,,求出,,再由题意得到,即可根据勾股定理求出结果.【详解】解:根据双曲线定义:,,∴,∴,,,∴是圆的直径,∴,中,,得故选【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.6、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B7、B【解析】双曲线的离心率为,渐进性方程为,计算得,故渐进性方程为.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.8、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题9、C【解析】根据渐近线可求出a,再由双曲线定义可求解.【详解】因为直线是双曲线的一条渐近线,所以,,又或,或(舍去),故选:C10、D【解析】将抛物线方程化为标准方程,由此确定的值即可.【详解】由可得抛物线标准方程为:,,抛物线的焦点到其准线的距离为.故选:D.11、B【解析】根据是等腰三角形且为锐角三角形,得到,即,解得离心率范围.【详解】,当时,,,不妨取,,是等腰三角形且为锐角三角形,则,即,,即,,解得,故.故选:B.12、B【解析】先求与平行且与相切的切线切点,再根据点到直线距离公式得结果.【详解】设与平行的直线与相切,则切线斜率k=1,∵∴,由,得当时,即切点坐标为P(1,0),则点(1,0)到直线的距离就是线上的点到直线的最短距离,∴点(1,0)到直线的距离为:,∴曲线上的点到直线l:的距离的最小值为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、证明过程见解析【解析】选①②作条件证明③时,可设出,结合的关系求出,利用是等差数列可证;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选①③作条件证明②时,根据等差数列的求和公式表示出,结合等差数列定义可证;选②③作条件证明①时,设出,结合的关系求出,根据可求,然后可证是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论.【详解】选①②作条件证明③:[方法一]:设,则,当时,;当时,;因为也是等差数列,所以,解得;所以,,故.[方法二]:设等差数列的公差为d,等差数列的公差为,则,将代入,化简得对于恒成立则有,解得.所以选①③作条件证明②:因为,是等差数列,所以公差,所以,即,因为,所以是等差数列.选②③作条件证明①:[方法一]:设,则,当时,;当时,;因为,所以,解得或;当时,,当时,满足等差数列的定义,此时为等差数列;当时,,不合题意,舍去.综上可知为等差数列.[方法二]【最优解】:因为,所以,,因为也为等差数列,所以公差,所以,故,当时,,当时,满足上式,故的通项公式为,所以,,符合题意.【整体点评】这类题型在解答题后可证是等差数列;法二:利用是等差数列即前两项的差求出公差,然后求出的通项公式,利用,求出的通项公式,进而证明出结论.14、①.②.【解析】判断出是等差数列,由此求得,利用累加法求得.【详解】依题意,则,所以数列是以为首项,公差为的等差数列,所以,,当时,,,也符合上式,所以.故答案为:;15、【解析】构造函数利用导数研究单调性,即可得到答案;【详解】,令,,单调递减,且,,x的取值范围是,故答案为:16、-2【解析】由已知可得,即,计算即可得出结果.【详解】因为是直线的一个方向向量,是平面的一个法向量,且直线平面,所以,所以,解得.故答案为:-2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意,,求出直线l的斜率,利用点斜式即可求解;(2)由题意,利用点斜式求出直线l的方程,然后由点到直线的距离公式求出弦心距,最后根据弦长公式即可求解.小问1详解】解:由题意,圆心,P为弦的中点时,由圆的性质有,又,所以,所以直线l的方程为,即;【小问2详解】解:因为直线l与直线平行,所以,所以直线的方程为,即,因为圆心到直线的距离,又半径,所以由弦长公式得.18、(1)(2)【解析】(1)利用两角和的余弦公式以及辅助角公式可得,再由正弦函数单调区间,整体代入即可求解.(2)根据三角函数的单调性即可求解.【小问1详解】,,解得,所以函数的单调递增区间为【小问2详解】由(1),解得函数的单调递减区间为,所以函数在上单调递减,在上单调递增,,,所以函数的最大值为.19、或【解析】首先根据复数的乘方及复数模的计算公式求出命题为真时参数的取值范围,再根据椭圆的性质求出命题为真时参数的取值范围,依题意为假,为真,即可求出参数的取值范围;【详解】解:因为,,,,所以,所以,所以为真时,因为方程表示焦点在轴上的椭圆,所以,所以,即为真时,所以为假时参数的取值范围为或,因为命题为真,命题或为真,所以为假,为真,或20、(1)证明见解析(2)【解析】(1)通过两个线面平行即可证明面面平行(2)以为坐标原点建立直角坐标系,通过空间向量的方法计算线面角的正弦值【小问1详解】如上图所示,在中,因为D,E分别为PA,PC的中点,所以,因为平面,平面,所以平面,连接,交于点,连接,因为与均为等腰直角三角形,,所以,,所以,且,则四边形是平行四边形,所以是中点,且G为线段的中点,所以中,,因为平面,平面,所以平面,又因为平面,,所以平面平面【小问2详解】因为,平面,,所以平面,所以可以以为坐标原点,建立如上图所示的直角坐标系,此时,,,,因为G为线段的中点,所以,所以,,,设平面的法向量为,则有,即,得其中一个法向量,,所以CG与平面所成角的正弦值为21、(1).(或标准形式)(2)或【解析】(1)根据题意,求出中垂线方程,与直线联立,可得圆心的坐标,求出圆的半径,即可得答案;(2)分切线的斜率存在与不存在两种情况讨论,求出切线的方程,综合可得答案【小问1详解】解:根据题意,因为圆过两点,,设的中点为,则,因为,所以的中垂线方程为,即又因为圆心在直线上,联立,解得,所以圆心,半径,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论