江西省九江市重点中学2026届数学高一上期末学业水平测试试题含解析_第1页
江西省九江市重点中学2026届数学高一上期末学业水平测试试题含解析_第2页
江西省九江市重点中学2026届数学高一上期末学业水平测试试题含解析_第3页
江西省九江市重点中学2026届数学高一上期末学业水平测试试题含解析_第4页
江西省九江市重点中学2026届数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省九江市重点中学2026届数学高一上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则()A.-3 B.-1C.1 D.32.设为两条不同的直线,为三个不重合平面,则下列结论正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则3.设定义在R上的函数满足,且,当时,,则A. B.C. D.4.已知为奇函数,当时,,则()A.3 B.C.1 D.5.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC6.点到直线的距离等于()A. B.C.2 D.7.某几何体的三视图如图所示,则它的体积是A.B.C.D.8.2018年,晓文同学参加工作月工资为7000元,各种用途占比统计如下面的条形图.后来晓文同学加强了体育锻炼,目前月工资的各种用途占比统计如下面的折线图.已知目前的月就医费比刚参加工作时少200元,则目前晓文同学的月工资为A.7000 B.7500C.8500 D.95009.已知是第三象限角,,则A. B.C. D.10.函数的一部分图像如图所示,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________12.若点在角终边上,则的值为_____13.已知集合,,则=______14.若,则________.15.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.16.已知函数定义域为,若满足①在内是单调函数;存在使在上的值域为,那么就称为“半保值函数”,若函数且是“半保值函数”,则的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(为常数)是奇函数.(1)求的值与函数的定义域.(2)若当时,恒成立.求实数的取值范围.18.如图,在底面是正方形的四棱锥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(1)求证:;(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由;(3)当二面角的大小为时,求PC与底面ABCD所成角的正切值.19.(1)已知,,试用、表示;(2)化简求值:20.直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2且l1与l2的距离为5,求l1,l2的方程.21.某水果经销商决定在八月份(30天计算)销售一种时令水果.在这30天内,日销售量h(斤)与时间t(天)满足一次函数h=t+2,每斤水果的日销售价格l(元)与时间t(天)满足如图所示的对应关系.(Ⅰ)根据提供的图象,求出每斤水果的日销售价格l(元)与时间t(天)所满足的函数关系式;(Ⅱ)设y(元)表示销售水果的日收入(日收入=日销售量×日销售价格),写出y与t的函数关系式,并求这30天中第几天日收入最大,最大值为多少元?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用同角三角函数基本关系式中的技巧弦化切求解.【详解】.故选:D【点睛】本题考查了同角三角函数基本关系中的弦化切技巧,属于容易题.2、B【解析】根据线面平行线面垂直面面垂直的定义及判定定理,逐一判断正误.【详解】选项,若,,则可能平行,相交或异面:故错选项,若,,则,故正确.选项,若,,因为,,为三个不重合平面,所以或,故错选项,若,,则或,故错故选:【点睛】本题考查线面平行及线面垂直的知识,注意平行关系中有一条平行即可,而垂直关系中需满足任意性,概念辨析题.3、C【解析】结合函数的周期性和奇偶性可得,代入解析式即可得解.【详解】由,可得.,所以.由,可得.故选C.【点睛】本题主要考查了函数的周期性和奇偶性,着重考查了学生的转化和运算能力,属于中档题.4、B【解析】根据奇偶性和解析式可得答案.【详解】由题可知,故选:B5、A【解析】利用面面垂直的判定定理逐一判断即可【详解】连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因为DE∩BE=E,所以AC⊥面BDEAC⊂面ABC,所以平面ABC⊥平面BED,故选A【点睛】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理6、C【解析】由点到直线的距离公式求解即可.【详解】解:由点到直线的距离公式得,点到直线的距离等于.故选:C【点睛】本题考查了点到直线的距离公式,属基础题.7、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.8、C【解析】根据两次就医费关系列方程,解得结果.【详解】参加工作就医费为,设目前晓文同学的月工资为,则目前的就医费为,因此选C.【点睛】本题考查条形图以及折线图,考查基本分析判断与求解能力,属基础题.9、D【解析】利用条件以及同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值【详解】∵α是第三象限角,tanα,sin2α+cos2α=1,得sinα,故选D【点睛】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题10、D【解析】由图可知,,排除选项,由,排除选项,故选.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2故答案为:2.点睛:求两条异面直线所成角关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.12、5【解析】由三角函数定义得13、{-1,1,2};【解析】=={-1,1,2}14、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:15、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.16、【解析】根据半保值函数的定义,将问题转化为与的图象有两个不同的交点,即有两个不同的根,换元后转化为二次方程的实根的分布可解得.【详解】因为函数且是“半保值函数”,且定义域为,由时,在上单调递增,在单调递增,可得为上的增函数;同样当时,仍为上的增函数,在其定义域内为增函数,因为函数且是“半保值函数”,所以与的图象有两个不同的交点,所以有两个不同的根,即有两个不同的根,即有两个不同的根,可令,,即有有两个不同正数根,可得,且,解得.【点睛】本题考查函数的值域的求法,解题的关键是正确理解“半保值函数”,解题时要认真审题,仔细解答,注意合理地进行等价转化三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),定义域为或;(2).【解析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域;(2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果.【详解】(1)因为函数是奇函数,所以,所以,即,所以,令,解得或,所以函数的定义域为或;(2),当时,所以,所以.因为,恒成立,所以,所以的取值范围是.【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.18、(1)见解析(2)GEC中点(3)【解析】试题分析:(1)要证:BD⊥FG,先证BD⊥平面PAC即可;(2)确定点G在线段AC上的位置,使FG∥平面PBD,FG∥平面PBD内的一条直线即可;(3)利用向量数量积求解法向量,然后转化求出PC与底面ABCD所成角的正切值解析:(1)(2)当GEC中点,即时,FG//平面PBD理由如下:连接PE,F为PC中点,G为EC中点,FG//PEFG//平面PBD(3)作作于H,连接DH,,四边形ABCD是正方形,又是二面角的平面角,即是PC与底面ABCD所成角连接EH,则又,PC与与底面ABCD所成角的正切值是.点睛:这个题目考查了空间中的直线和平面的位置关系.证明线线垂直,可以从线面垂直入手,也可以平移到同一平面中利用平面几何知识证明;求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;在高二的课本上讲到还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可19、(1);(2)【解析】(1)利用换底公式及对数运算公式化简;(2)利用指数运算公式化简求值.【详解】(1);(2).20、l1:,l2:或者l1:,l2:;【解析】由题意,分成两种情况讨论,l1与l2平行且斜率存在时,通过距离等于5列出方程求解即可;l1与l2平时且斜率不存在时,验证两直线间的距离等于5也成立,最后得出答案.【详解】因为l1∥l2,当l1,l2斜率存在时,设为,则l1,l2方程分别为:,化成一般式为:,,又l1与l2的距离为5,所以,解得:,故l1方程:l2方程:;当l1,l2斜率不存在时,l1:,l2:,也满足题意;综上:l1:,l2:或者l1:,l2:;【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论21、(I);(II)见解析.【解析】(Ⅰ)利用已知条件列出时间段上的函数的解析式即可.(Ⅱ)利用分段函数的解析式求解函数的最值即可【详解】解:(Ⅰ)当0<t≤10,l=30,当10<t≤30时,设函数关系式为l(t)=kt+b,则,解得k=-1,b=40,∴l(t)=-t+40,∴每斤水果的日销售价格

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论