版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省鹿泉一中2026届高一上数学期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是上的减函数,那么的取值范围是()A. B.C. D.2.设,为正数,且,则的最小值为()A. B.C. D.3.表示不超过x的最大整数,例如,,,.若是函数的零点,则()A.1 B.2C.3 D.44.由直线上的点向圆引切线,则切线长的最小值为A. B.C. D.5.集合,则A∩B=()A.[0,2] B.(1,2]C.[1,2] D.(1,+∞)6.已知函数则()A.- B.2C.4 D.117.为了得到函数图象,只需把的图象上的所有点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位8.若,,则()A. B.C. D.9.已知函数f(x)=-log2x,则f(x)的零点所在的区间是()A.(0,1) B.(2,3)C.(3,4) D.(4,+∞)10.下列全称量词命题与存在量词命题中:①设A、B为两个集合,若,则对任意,都有;②设A、B为两个集合,若,则存在,使得;③是无理数,是有理数;④是无理数,是无理数.其中真命题的个数是()A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则实数的取值范围是__________.12.函数在上的最小值为__________.13.已知函数的最大值与最小值之差为,则______14.已知函数是定义在上的奇函数,当时,为常数),则=_________.15.函数,的图象恒过定点P,则P点的坐标是_____.16.函数的定义域是_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合(1)当时,求;(2)若,求实数的取值范围18.已知函数.(1)求的单调区间;(2)若,且,求值.19.已知直线经过直线与的交点.(1)点到直线的距离为3,求直线的方程;(2)求点到直线的距离的最大值,并求距离最大时的直线的方程20.已知函数是定义在R上的奇函数,且当时,.(1)求函数的解析式;(2)若函数在区间上单调递增,求实数的取值范围.21.已知,其中为奇函数,为偶函数.(1)求与的解析式;(2)判断函数在其定义域上的单调性(不需证明);(3)若不等式恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由为上减函数,知递减,递减,且,从而得,解出即可【详解】因为为上的减函数,所以有,解得:,故选:A.2、B【解析】将拼凑为,利用“1”的妙用及其基本不等式求解即可.【详解】∵,∴,即,∴,当且仅当,且时,即,时等号成立故选:.3、B【解析】利用零点存在性定理判断的范围,从而求得.【详解】在上递增,,所以,所以.故选:B4、B【解析】过圆心作直线的垂线,垂线与直线的交点向圆引切线,切线长最小【详解】圆心,半径,圆心到直线的距离则切线长的最小值【点睛】本题考查圆的切线长,考查数形结合思想,属于基础题5、B【解析】先求出集合A,B,再求两集合的交集即可【详解】解:由,得,所以,由于,所以,所以,所以,故选:B6、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.7、D【解析】利用三角函数图象的平移规律可得结论.【详解】因为,所以,为了得到函数的图象,只需把的图象上的所有点向右平移个单位.故选:D.8、A【解析】由不等式的性质判断A、B、D的正误,应用特殊值法的情况判断C的正误.【详解】由,则,A正确;,B错误;,D错误.当时,,C错误;故选:A.9、C【解析】先判断出函数的单调性,然后得出的函数符号,从而得出答案.【详解】由在上单调递减,在上单调递减所以函数在上单调递减又根据函数f(x)在上单调递减,由零点存在定理可得函数在(3,4)之间存在零点.故选:C10、B【解析】对于命题①②,利用全称量词命题与存在量词命题的定义结合集合包含与不包含的意义直接判断;对于命题③④,举特例说明判断作答.【详解】对于①,因集合A、B满足,则由集合包含关系的定义知,对任意,都有,①是真命题;对于②,因集合A、B满足,则由集合不包含关系的定义知,存在,使得,②是真命题;对于③,显然是无理数,也是无理数,则③是假命题;对于④,显然是无理数,却是有理数,则④是假命题.所以①②是真命题.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【点睛】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.12、【解析】正切函数在给定定义域内单调递增,则函数的最小值为.13、或.【解析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【详解】由题意,函数,当时,函数在上为单调递增函数,可得,解得;当时,显然不成立;当时,函数在上为单调递减函数,可得,解得,综上可得,或.故答案为:或.14、【解析】先由函数奇偶性,结合题意求出,计算出,即可得出结果.【详解】因为为定义在上的奇函数,当时,,则,解得,则,所以,因此.故答案为:.15、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.16、.【解析】由题意,要使函数有意义,则,解得:且.即函数定义域为.考点:函数的定义域.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用对数函数单调性求出,即,利用指数函数单调性解不等式,求出,从而求出并集;(2)根据集合的包含关系得到不等式,求出实数的取值范围.【小问1详解】因为,所以,,由,得,所以,当时,∴【小问2详解】由可得:,解得:所以实数的取值范围是18、(1)的单调递增区间为,单调递减区间(2)【解析】(1)化简解析式,根据三角函数单调区间的求法,求得的单调区间.(2)求得、,结合两角差的正弦公式求得.【小问1详解】.由,得,的单调递增区间为,同理可得的单调递减区间.【小问2详解】,.,...19、(1)x=2或4x-3y-5=0(2)见解析【解析】(1)设过两直线的交点的直线系方程,再根据点到直线的距离公式,求出的值,得出直线的方程;(2)先求出交点P的坐标,由几何的方法求出距离的最大值【详解】(1)因为经过两已知直线交点直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,点到直线的距离为3,所以=3,解得λ=或λ=2,所以直线l的方程为x=2或4x-3y-5=0.(2)由解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,则d≤|PA|(当l⊥PA时等号成立)所以dmax=|PA|=此时直线l的方程为:3x-y-5=020、(1);(2).【解析】(1)设,计算,再根据奇函数的性质,得,,即可得函数在R上的解析式;(2)作出函数的图像,若在区间上单调递增,结合函数图像,列关于的不等式组求解.详解】(1)设,则,所以又为奇函数,所以,于是时,,所以函数的解析式为(2)作出函数的图像如图所示,要使在上单调递增,结合的图象知,所以,所以的取值范围是.21、(1),;(2)函数在其定义域上为减函数;(3).【解析】(1)由与可建立有关、的方程组,可得解出与的解析式;(2)化简函数解析式,根据函数的解析式可直接判断函数的单调性;(3)将所求不等式变形为,根据函数的定义域、单调性可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】(1)由于函数为奇函数,为偶函数,,,即,所以,,解得,.由,可得,所以,,;(2)函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026秋招:内蒙古林草生态建设公司笔试题及答案
- 2026秋招:辽宁能源产业控股集团面试题及答案
- 2026秋招:酒泉钢铁集团面试题及答案
- 2026秋招:金螳螂企业集团试题及答案
- 做账实操-钟表生产企业会计账务处理分录
- 做账实操-银行公司会计账务处理分录
- 2026年大学(对外汉语教学)核心知识测试试题及答案
- 2025年储能电站运维质量检查试卷及答案
- 2026美团招聘试题及答案
- 山西2025年职业病诊断医师资格考试(职业性化学中毒)题库及答案
- 医院检查、检验结果互认制度
- 2026年高考化学模拟试卷重点知识题型汇编-原电池与电解池的综合
- 2025青海省生态环保产业有限公司招聘11人笔试历年参考题库附带答案详解
- 2025浙江杭州钱塘新区建设投资集团有限公司招聘5人笔试参考题库及答案解析
- 学堂在线 雨课堂 学堂云 科研伦理与学术规范 期末考试答案
- Tickets-please《请买票》 赏析完整
- 《马克的怪病》课件
- 部编版八年级道德与法治上册《树立维护国家利益意识捍卫国家利益》教案及教学反思
- 基于单片机的智能家居控制系统设计
- 锅炉大件吊装方案
- 昆明医科大学第二附属医院进修医师申请表
评论
0/150
提交评论