版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省宾川县2026届高二上数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是等比数列,则()A.数列是等差数列 B.数列是等比数列C.数列是等差数列 D.数列是等比数列2.已知数列满足,,数列的前n项和为,若,,成等差数列,则n=()A.6 B.8C.16 D.223.若直线的斜率为,则的倾斜角为()A. B.C. D.4.已知三个观测点,在的正北方向,相距,在的正东方向,相距.在某次爆炸点定位测试中,两个观测点同时听到爆炸声,观测点晚听到,已知声速为,则爆炸点与观测点的距离是()A. B.C. D.5.圆与圆公切线的条数为()A.1 B.2C.3 D.46.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D7.在正方体中,下列几种说法不正确的是A. B.B1C与BD所成的角为60°C.二面角的平面角为 D.与平面ABCD所成的角为8.若双曲线的一条渐近线方程为.则()A. B.C.2 D.49.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.310.已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A. B.C. D.11.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种12.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设是数列的前项和,且,,则__________14.若无论实数取何值,直线与圆恒有两个公共点,则实数的取值范围为___________.15.设函数,,对任意的,都有成立,则实数的取值范围是______16.已知长方体的棱,则异面直线与所成角的大小是________________.(结果用反三角函数值表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点F为抛物线的焦点,点在抛物线上,且.(1)求该抛物线的方程;(2)若点A在第一象限,且抛物线在点A处的切线交y轴于点M,求的面积.18.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值19.(12分)设椭圆方程为,短轴长,____________.请在①与双曲线有相同的焦点,②离心率,③这三个条件中任选一个补充在上面的横线上,完成以下问题.(1)求椭圆的标准方程;(2)求以点为中点的弦所在的直线方程.20.(12分)已知圆过点,,且圆心在直线:上.(1)求圆的方程;(2)若从点发出的光线经过轴反射,反射光线刚好经过圆心,求反射光线的方程.21.(12分)在①;②,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在中,内角A,B,C的对边分别为a,b,c,设的面积为S,已知_________.(1)求的值;(2)若,求值.注:如果选择多个条件分别解答,按第一个解答计分.22.(10分)已知双曲线,直线l与交于P、Q两点(1)若点是双曲线的一个焦点,求的渐近线方程;(2)若点P的坐标为,直线l的斜率等于1,且,求双曲线的离心率
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】取,可判断AC选项;利用等比数列的定义可判断B选项;取可判断D选项.【详解】若,则、无意义,A错C错;设等比数列的公比为,则,(常数),故数列是等比数列,B对;取,则,数列为等比数列,因为,,,且,所以,数列不是等比数列,D错.故选:B.2、D【解析】利用累加法求得列的通项公式,再利用裂项相消法求得数列的前n项和为,再根据,,成等差数列,得,从而可得出答案.【详解】解:因为,且,所以当时,,因为也满足,所以.因为,所以.若,,成等差数列,则,即,得.故选:D.3、C【解析】设直线l倾斜角为,根据题意得到,即可求解.【详解】设直线l的倾斜角为,因为直线的斜率是,可得,又因为,所以,即直线的倾斜角为.故选:C.4、D【解析】根据题意作出示意图,然后结合余弦定理解三角形即可求出结果.【详解】设爆炸点为,由于两个观测点同时听到爆炸声,则点位于的垂直平分线上,又在的正东方向且观测点晚听到,则点位于的左侧,,,,设,则,解得,则爆炸点与观测点的距离为,故选:D.5、D【解析】分别求出圆和圆的圆心和半径,判断出两圆的位置关系可得到公切线的条数.【详解】根据题意,圆即,其圆心为,半径;圆即,其圆心为,半径;两圆的圆心距,所以两圆相离,其公切线条数有4条;故选:D.6、A【解析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因,,,选项A,,,若A,B,D三点共线,则,即,解得,故该选项正确;选项B,,,若A,B,C三点共线,则,即,解得不存,故该选项错误;选项C,,,若B,C,D三点共线,则,即,解得不存在,故该选项错误;选项D,,,若A,C,D三点共线,则,即,解得不存在,故该选项错误;故选:A.7、D【解析】在正方体中,利用线面关系逐一判断即可.【详解】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵B1C∥D,即B1C与BD所成的角为∠DB,连接△DB为等边三角形,∴B1C与BD所成的角为60°,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误故选D【点睛】本题考查了线面的空间位置关系及空间角,做出图形分析是关键,考查推理能力与空间想象能力8、C【解析】求出渐近线方程为,列出方程求出.【详解】双曲线的渐近线方程为,因为,所以,所以.故选:C9、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.10、A【解析】设,根据得,代入椭圆方程即可求得离心率.【详解】设椭圆方程,所以,设,所以,所以,在椭圆上,所以,.故选:A11、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D12、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【点睛】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.14、【解析】根据点到直线的距离公式得到,根据,解不等式得到答案.【详解】依题意有圆心到直线的距离,即,又无论取何值,,故,故.故答案:15、【解析】首先求得函数在区间上的最大值,然后分离参数,利用导函数求最值即可确定实数的取值范围.【详解】∵在上恒成立,∴当时,取最大值1,∵对任意的,都有成立,∴在上恒成立,即在上恒成立,令,则,,∵在上恒成立,∴在上为减函数,∵当时,,故当时,取最大值1,故,故答案为【点睛】本题考查的知识点是函数恒成立问题,利用导数研究函数的单调性,利用导数研究函数的最值,难度中档16、【解析】建立空间直角坐标系,求出异面直线与的方向向量,再求出两向量的夹角,进而可得异面直线与所成角的大小【详解】解:建立如图所示的空间直角坐标系:在长方体中,,,,,,,,,,异面直线与所成角的大小是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)10.【解析】(1)由根据抛物线的定义求出可得抛物线方程;(2)求出抛物线过点A的切线,得出点M的坐标即可求三角形面积.【小问1详解】由抛物线的定义可知,即,抛物线的方程为.【小问2详解】,且A在第一象限,,即A(4,4),显然切线的斜率存在,故可设其方程为,由,消去得,即,令,解得,切线方程为.令x=0,得,即,又,,.18、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得四边形是正方形,所以在直三棱柱中,平面平面,交线为,在中,可知,所以平面,于因为,所以平面,而平面,所以【小问2详解】如图所示,以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则,于是设平面的法向量为,则,可取而平面的一个法向量为,所以故平面与平面所成锐二面角的余弦值为19、(1)答案见解析,.(2).【解析】(1)若选①:求得双曲线得双曲线的焦点得出椭圆的,再由,可求得椭圆的标准方程;若选②:根据已知条件和椭圆的离心率可求得,从而得椭圆的标准方程;若选③:由已知建立方程,求解可求得,从而得椭圆的标准方程.(2)设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,由根与系数的关系和中点坐标公式可求得答案.【小问1详解】解:若选①:由双曲线得双曲线的焦点和,因为椭圆与双曲线有相同的焦点,所以椭圆的,又,所以,所以,所以椭圆的标准方程为;若选②:因为,所以,又离心率,所以,即,解得,所以椭圆的标准方程为;若选③:因为,所以,即,又,解得,,所以椭圆的标准方程为;【小问2详解】解:由题意得直线的斜率必存在,设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,则,因为点为AB中点,所以,解得,所以所求的直线方程为,即.20、(1);(2)【解析】(1)根据题意设圆心,利用两点坐标公式求距离公式表示出,解出,确定圆心坐标和半径,进而得出圆的标准方程;(2)根据点关于坐标轴对称的点的特征可得,利用直线的两点式方程即可得出结果.【小问1详解】圆过点,,因为圆心在直线::上,设圆心,又圆过点,,所以,即,解得,所以,所以故圆的方程为:;【小问2详解】点关于轴的对称点,则反射光线必经过点和点,由直线的两点式方程可得,即:.21、条件选择见解析;(1);(2).【解析】(1)若选择①,先利用正弦定理进行边角互化,再结合正余弦的和差角公式化简可得,得出;若选择②,利用余弦定理及面积公式可得,得;(2)由(1)可知,由及得,,再根据余弦定理求解的值.【详解】解析:(1)选择条件①.,,得,选择条件②,由余弦定理及三角形的面积公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【点睛】本题考查解三角形,难度一般.解答的关键在于根据题目中边角关系,运用正弦定理进行边角互化、再根据两角和与差的正弦公式进行化简是关键.一般地,当等式中含有a,b,c的关系式,且全为二次时,可利用余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丰富多彩的建筑风格2+风格多样的外国古代建筑+课件-2025-2026学年赣美版初中美术七年级下册
- “与法同行护航青春”增强法律观念主题班会课件
- 电机与电气控制技术 课件 项目5-7 交流电机控制线路安装、设计与调试 -交流电动机变频调速控制电路的安装与调试
- 某著名企业商业地产基础知识培训
- 《GBT 22606-2008莠去津原药》专题研究报告
- 《GB-T 10191-2011电子设备用固定电容器 第16-1部分:空白详细规范 金属化聚丙烯膜介质直流固定电容器 评定水平E和EZ》专题研究报告
- 某著名企业化妆品店战略规划方案
- 《GBT 17481-2008预混料中氯化胆碱的测定》专题研究报告
- 《GBT 21851-2008化学品 批平衡法检测 吸附解吸附试验》专题研究报告
- 《GBT 16304-2008压电陶瓷材料性能测试方法 电场应变特性的测试》专题研究报告
- 经导管主动脉瓣置换术(TAVR)患者的麻醉管理
- 2023年兴业银行贵阳分行招聘人员笔试上岸历年典型考题与考点剖析附带答案详解
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 加油站百日攻坚行动实施方案
- 马工程版《中国经济史》各章思考题答题要点及详解
- 运输合同纠纷答辩状
- 基坑开挖施工方案-自然放坡
- GB/T 36964-2018软件工程软件开发成本度量规范
- GB/T 27548-2011移动式升降工作平台安全规则、检查、维护和操作
- 1、汽车配线、电子连接器及保护装置
- 小学五年级那一刻我长大了600字
评论
0/150
提交评论