江西省抚州市临川二中、临川二中实验学校2026届数学高一上期末综合测试试题含解析_第1页
江西省抚州市临川二中、临川二中实验学校2026届数学高一上期末综合测试试题含解析_第2页
江西省抚州市临川二中、临川二中实验学校2026届数学高一上期末综合测试试题含解析_第3页
江西省抚州市临川二中、临川二中实验学校2026届数学高一上期末综合测试试题含解析_第4页
江西省抚州市临川二中、临川二中实验学校2026届数学高一上期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市临川二中、临川二中实验学校2026届数学高一上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,满足,,且与夹角为,则()A. B.C. D.2.已知,则()A. B.C. D.33.若,,则下列结论正确的是()A. B.C. D.4.函数在的图象大致为()A. B.C. D.5.已知函数在上单调递减,则实数a的取值范围是A. B.C. D.6.定义在上的奇函数,满足,则()A. B.C.0 D.17.已知函数的图象关于直线对称,则=A. B.C. D.8.幂函数在上是减函数.则实数的值为A.2或 B.C.2 D.或19.下列函数中,最小正周期为的奇函数是()A. B.C. D.10.已知函数的图象关于直线对称,且,则的最小值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.12.如图是函数在一个周期内的图象,则其解析式是________13.若函数,,则_________;当时,方程的所有实数根的和为__________.14.已知,且,则_______.15.若在内无零点,则的取值范围为___________.16.下列四个命题中:①若奇函数在上单调递减,则它在上单调递增②若偶函数在上单调递减,则它在上单调递增;③若函数为奇函数,那么函数的图象关于点中心对称;④若函数为偶函数,那么函数的图象关于直线轴对称;正确的命题的序号是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不等式的解集为(1)求a的值;(2)若不等式的解集为R,求实数m的取值范围.18.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:0050(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;(Ⅱ)将图象上所有点向左平行移动个单位长度,得到的图象.若图象的一个对称中心为,求的最小值19.已知函数,(其中,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最高点为.(1)求函数的解析式;(2)先把函数的图象向左平移个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若总存在,使得不等式成立,求实数的最小值.20.设全集,集合(1)求;(2)若集合满足,求实数的取值范围.21.已知函数f(x)=m(1)若m=1,求fx(2)若方程fx=0有两个实数根x1,x2,且x

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【详解】根据向量运算性质,,故选:D2、A【解析】结合两角和的正切公式、诱导公式求得正确答案.【详解】.故选:A3、C【解析】根据不等式的性质,逐一分析选项,即可得答案.【详解】对于A:因为,所以,因为,所以,故A错误;对于B:因为,所以,且,所以,故B错误;对于C:因为,所以,又,所以,故C正确;对于D:因为,,所以,所以,故D错误.故选:C4、D【解析】先判断出函数的奇偶性,然后根据的符号判断出的大致图象.【详解】因为,所以,为奇函数,所以排除A项,又,所以排除B、C两项,故选:D【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.5、C【解析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可【详解】若函数在上单调递减,则,解得.故选C.【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值6、D【解析】由得出,再结合周期性得出函数值.【详解】,,即,,则故选:D7、C【解析】因为函数的图象关于直线对称,所以,即,因此,选C.8、B【解析】由题意利用幂函数的定义和性质可得,由此解得的值【详解】解:由于幂函数在时是减函数,故有,解得,故选:【点睛】本题主要考查幂函数的定义和性质应用,属于基础题9、C【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简.【详解】A选项:,其定义域为,,为偶函数,其最小正周期为,故A错误.B选项:,其最小正周期为,函数定义域为,,函数不是奇函数,故B错误.C选项:其定义域为,,函数为奇函数,其最小正周期为,故C正确.D选项:函数定义域为,,函数为偶函数,其最小正周期,故D错误.故选:C.10、D【解析】由辅助角公式可得,由函数关于直线对称,可得,可取.从而可得,由此结合,可得一个最大值一个最小值,从而可得结果.【详解】,,函数关于直线对称,,即,,故可取故,,即可得:,故可令,,,,即,,其中,,,故选D【点睛】本题主要考查辅助角公式的应用、三角函数的最值、三角函数的对称性,转化与划归思想的应用,属于难题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.二、填空题:本大题共6小题,每小题5分,共30分。11、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.12、【解析】由图可得;,则;由五点作图法可得,解得,所以其解析式为考点:1.三角函数的图像;2.五点作图法;13、①.0②.4【解析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【点睛】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.14、【解析】根据题意,可知,结合三角函数的同角基本关系,可求出和再根据,利用两角差的余弦公式,即可求出结果.【详解】因为,所以,因为,所以,又,所以,所以.故答案为:.15、【解析】求出函数的零点,根据函数在内无零点,列出满足条件的不等式,从而求的取值范围.【详解】因为函数在内无零点,所以,所以;由,得,所以或,由,得;由,得;由,得,因为函数在内无零点,所以或或,又因为,所以取值范围为.故答案为:.16、②③【解析】根据奇函数、偶函数的性质可判断①②,结合平移变换可判断③④.【详解】奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性,故①错误,②正确;因为函数为奇函数,图象关于原点对称,的图象可以由的图象向右平移1个单位长度得到,故的图象关于点对称,故③正确;函数的图象可以由函数的图象向左平移1个单位长度得到,因为为偶函数,图象关于y轴对称,所以的图象关于直线轴对称,故④错误.故答案为:②③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意得到方程的两根为,由韦达定理可得到结果;(2)不等式的解集为R,则解出不等式即可.【详解】(1)由已知,,且方程的两根为.有,解得;(2)不等式的解集为R,则,解得,实数的取值范围为.【点睛】这个题目考查了根和系数的关系,涉及到两根关系的题目,多数是可以考虑韦达定理的应用的,也考查到二次函数方程根的个数的问题.18、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据表中已知数据,解得.数据补全如下表:00500且函数表达式为.(Ⅱ)由(Ⅰ)知,得因为对称中心为,令,解得,由于函数的图象关于点成中心对称,令,解得,.由可知,当时,取得最小值.考点:“五点法”画函数在某一个周期内的图象,三角函数的平移变换,三角函数的性质19、(1);(2).【解析】(1)根据相邻两个交点之间的距离为可求出,由图像上一个最高点为可求出,,从而得到函数的解析式;(2)根据三角变换法则可得,再求出在上的最小值,利用对数函数的单调性即可求出实数的最小值【详解】(1)∵,∴,解得.又函数图象上一个最高点为,∴,(),∴(),又,∴,∴(2)把函数的图象向左平移个单位长度,得到;然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,即,∵,∴,,依题意知,,∴,即实数的最小值为.20、(1)或(2)【解析】(1)化简集合,利用交集的定义求解,再利用补集的定义求解;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论