内蒙古赤峰市第二中学2026届高二上数学期末教学质量检测试题含解析_第1页
内蒙古赤峰市第二中学2026届高二上数学期末教学质量检测试题含解析_第2页
内蒙古赤峰市第二中学2026届高二上数学期末教学质量检测试题含解析_第3页
内蒙古赤峰市第二中学2026届高二上数学期末教学质量检测试题含解析_第4页
内蒙古赤峰市第二中学2026届高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古赤峰市第二中学2026届高二上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的倾斜角为()A.150° B.120°C.60° D.30°2.已知数列的前n项和为,,,则=()A. B.C. D.3.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知椭圆的左、右焦点分别是,焦距,过点的直线与椭圆交于两点,若,且,则椭圆C的方程为()A. B.C. D.5.已知半径为2的圆经过点(5,12),则其圆心到原点的距离的最小值为()A.10 B.11C.12 D.136.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④7.方程表示的图形是A.两个半圆 B.两个圆C.圆 D.半圆8.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A B.C. D.9.若数列满足,,则该数列的前2021项的乘积是()A. B.C.2 D.110.若曲线表示圆,则m的取值范围是()A. B.C. D.11.圆的圆心坐标与半径分别是()A. B.C. D.12.函数,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足,则的最大值为______.14.已知圆的圆心与点关于直线对称,直线与圆相交于、两点,且,则圆的方程为_________15.设函数满足,则______.16.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线:.(1)若曲线是双曲线,求的取值范围;(2)设,已知过曲线的右焦点,倾斜角为的直线交曲线于A,B两点,求.18.(12分)已知两定点,,动点与两定点的斜率之积为(1)求动点M的轨迹方程;(2)设(1)中所求曲线为C,若斜率为的直线l过点,且与C交于P,Q两点.问:在x轴上是否存在一点T,使得对任意且,都有(其中,分别表示,的面积).若存在,请求出点T的坐标;若不存在,请说明理由19.(12分)已知首项为1的数列满足.(1)求数列的通项公式;(2)记,求数列的前n项和.20.(12分)如图,在四棱锥中,平面,四边形是菱形,,,是的中点(1)求证:;(2)已知二面角的余弦值为,求与平面所成角的正弦值21.(12分)已知圆M的方程为.(1)写出圆M的圆心坐标和半径;(2)经过点的直线l被圆M截得弦长为,求l的方程.22.(10分)如图,已知抛物线的焦点为,点是轴上一定点,过的直线交与两点.(1)若过的直线交抛物线于,证明纵坐标之积为定值;(2)若直线分别交抛物线于另一点,连接交轴于点.证明:成等比数列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由斜率得倾斜角【详解】直线的斜率为,所以倾斜角为30°.故选:D2、D【解析】利用公式计算得到,得到答案【详解】由已知得,即,而,所以故选:D3、C【解析】化简复数,根据复数的几何意义,即可求解.【详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.4、A【解析】画出图形,利用已知条件,推出,延长交椭圆于点,得到直角和直角,设,则,根据椭圆的定义转化求解,即可求得椭圆的方程.【详解】如图所示,,则,延长交椭圆于点,可得直角和直角,设,则,根据椭圆的定义,可得,在直角中,,解得,又在中,,代入可得,所以,所以椭圆的方程为.故选:A.5、B【解析】由条件可得圆心的轨迹是以点为圆心,半径为2的圆,然后可得答案.【详解】因为半径为2的圆经过点(5,12),所以圆心的轨迹是以点为圆心,半径为2的圆,所以圆心到原点的距离的最小值为,故选:B6、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题7、D【解析】其中,再两边同时平方,由此确定图形【详解】根据题意,,再两边同时平方,由此确定图形为半圆.故选:D【点睛】几何图像中要注意与方程式是一一对应,故方程的中未知数的的取值范围对应到图形中的坐标的取值范围8、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B9、C【解析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.10、C【解析】按照圆的一般方程满足的条件求解即可.【详解】或.故选:C.11、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.12、B【解析】求出函数的导数,代入求值即可.【详解】函数,故,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图所示,化目标函数为,由图可知,当直线过点时,直线在y轴上的截距最大,z最大,联立方程组,解得点,则取得最大值为.故答案为:【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合的思想,需要注意的是:一,准确无误作出可行域;二,画目标函数所对应直线时,要注意让其斜率与约束条件中的直线的斜率比较;三,一般情况下,目标函数的最值会在可行域的端点或边界上取得.14、【解析】利用对称条件求出圆心C的坐标,借助直线被圆所截弦长求出圆半径即可写出圆的方程.【详解】设圆的圆心,依题意,,解得,即圆心,点C到直线的距离,因圆截直线所得弦AB长为6,于是得圆C的半径所以圆的方程为:.故答案为:15、5【解析】考点:函数导数与求值16、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用双曲线的标准方程直接列不等式组,即可求解;(2)先求出直线l的方程为:,利用“设而不求法”和弦长公式求弦长.【小问1详解】要使曲线:为双曲线,只需,解得:,即的取值范围.【小问2详解】当m=0时,曲线C的方程为,可得,所以右焦点,由题意可得直线l的方程为:.设,联立整理可得:,可得:所以弦长,所以18、(1)(2)存在;【解析】(1)设出点的坐标,根据,即可直接求出动点M的轨迹方程;(2)根据题意写出直线的方程,把直线的方程与曲线的方程联立,消元,写韦达;根据条件,同时结合三角形的面积公式可得出;从而结合韦达定理可求出点T的坐标.【小问1详解】设,由,得,即,所以动点M的轨迹方程为.【小问2详解】设PT与RT夹角为,QT与RT夹角为,因为,所以,即,所以,设,,,直线l的方程为,因为,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在点,使得对任意且,都有.19、(1)(2)【解析】(1)由,构造是以为首项,为公比等比数列,利用等比数列的通项公式可得结果;(2)由(1)得,利用裂项相消可求.【小问1详解】由,得,又,所以数列是首项为2,公比为2的等比数列,则,即,故数列的通项公式为.【小问2详解】由(1)知,,所以.因为,所以,所以数列的前n项和.20、(1)证明见解析;(2).【解析】(1)由菱形及线面垂直的性质可得、,再根据线面垂直的判定、性质即可证结论.(2)构建空间直角坐标系,设,结合已知确定相关点坐标,进而求面、面的法向量,结合已知二面角的余弦值求出参数t,再根据空间向量夹角的坐标表示求与平面所成角的正弦值【小问1详解】由平面,平面,则,又是菱形,则,又,所以平面,平面所以E.【小问2详解】分别以,,为,,轴正方向建立空间直角坐标系,设,则,由(1)知:平面的法向量为,令面的法向量为,则,令,可得,因为二面角的余弦值为,则,可得,则,设与平面所成的角为,又,,所以.21、(1)圆心坐标为,半径为2(2)或【解析】(1)求得圆的标准方程,从而求得圆心和半径.(2)根据直线的斜率存在和不存在进行分类讨论,由此求得的方程.【小问1详解】圆的标准方程为:.所以圆M的圆心坐标为,半径为2.【小问2详解】因为圆M半径为2,直线l被圆M截得弦长为,由垂径定理可知M到直线距离为1.当l不垂直于轴时,设,即,则.解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论