版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025学年第一学期浙南名校联盟期中联考高二年级数学学科试题命题:瓯海中学黄成宝周聪寅审题:龙湾中学徐燕考生须知:1.本卷共4页,满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字;3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸.选择题部分(共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角是()A.45° B.60° C.120° D.135°【答案】D【解析】【分析】由直线的斜截式即可得到直线的斜率,再由斜率与倾斜角的关系即可得解.【详解】直线即的斜率为,设该直线的倾斜角为,则,所以直线的倾斜角是.故选:D2.样本:80,90,100,100,110,120的中位数是()A.95 B.100 C.105 D.110【答案】B【解析】【分析】由中位数的定义即可得出答案.【详解】由题意得样本的中位数为.故选:B3.函数的零点所在区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【答案】B【解析】【分析】先结合函数图象可得仅有一个零点,再利用零点存在定理判断零点存在区间.【详解】的零点等价于的解即的解.在上的图象如图所示,故仅有一个实数解,故仅有一个零点.∴函数y=f(x)有且只有一个零点.∴,∴函数的零点所在区间为(1,2).故选:B.【点睛】判断函数的零点所在区间主要方法是利用零点存在定理,判断函数在给定区间端点出的符号是否相反.4.已知直线,异面,则对空间任意一点,都存在过且与,()A.都平行的直线 B.都垂直的直线 C.都平行的平面 D.都垂直的平面【答案】B【解析】【分析】利用平行线的传递性判断A选项,由异面直线存在公垂线判断B选项,取特殊点判断C选项,根据线面垂直的性质可判断D选项.【详解】对于A,如果存在与都平行的直线,即,根据平行线的传递性,可得异面直线平行,矛盾,故A错误.对于B,两条异面直线存在公垂线,这条公垂线与两条异面直线都垂直,过点的直线一定可以做与该公垂线平行或重合的直线,故B正确;C选项,若点在直线上,则此时不存在过点的平面,使得其与直线平行,C错误;D选项,若存在一个平面与直线都垂直,则直线互相平行,与题设中是异面直线矛盾,故不存在与都垂直的平面,故D错误.故选:B.5.下列多面体,一定有外接球的是()A.三棱锥 B.四棱锥 C.三棱柱 D.三棱台【答案】A【解析】【分析】判断每个选项中的多面体是否一定能找到一个球,使得该多面体的所有顶点都在这个球面上.【详解】任意的三棱锥一定有外接球,正确,如果四棱锥的底面是一个非圆内接四边形,那么这个四棱锥就不一定存在外接球,错误,三棱柱的外接球需要满足上下底面三角形的外心连线与侧棱垂直等条件,只有当三棱锥是直三棱柱且上下底面都有外接圆时,才可能有外接球,错误,三棱台是又三棱锥截得,同样不是所有的三棱台都是外接球,错误.故选:.6.设为椭圆的左焦点,为上一动点,则线段的中点的轨迹是()A.一个椭圆,其离心率与的离心率相同 B.一个椭圆,其离心率与的离心率不同C.一个圆,其直径与的长半轴长相等 D.一个圆,其直径与的短半轴长相等【答案】A【解析】【分析】利用相关点法来求出中点轨迹,根据方程可判断选项.【详解】设椭圆方程为,点,,的中点,则,由于点在椭圆上,则,所以代入可得:,整理得:,所以中点的轨迹仍为椭圆,其离心率为,与原椭圆的离心率相同,故A正确,BCD错误;故选:A.7.在平行六面体中,,,,,则()A. B.3 C. D.【答案】C【解析】【分析】利用作为基底表示向量,再根据数量积求模即可.【详解】在平行六面体中,,因为,,,,所以,故选:C8.在平面直角坐标系中,点,,动点满足,则的纵坐标的最大值为()A. B. C. D.1【答案】C【解析】【分析】设动点,根据两点之间距离列得等式,结合方程有根解得范围.【详解】设动点,因为,所以,两边平方得,化简得,即,将该式看作关于的一元二次方程:,因为点存在,所以该关于的方程必有非负实数解,其判别式,解得,所以,故的纵坐标的最大值为.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设函数,,则()A.与有相同的奇偶性 B.C. D.【答案】BCD【解析】【分析】根据函数奇偶性定义判断A,代入计算验证等式判断BCD.【详解】对于A,函数,有,所以函数为偶函数;函数,有,函数为奇函数,A错误;对于B,,所以,B正确;对于C,,所以,C正确;对于D,,所以,D正确;故选:BCD.10.已知正数,满足,则()A.的最大值为5 B.的最大值为36C.的最小值为 D.的最小值为【答案】AB【解析】【分析】设,结合辅助角公式和三角函数的范围解得最大值判断A;把问题转化为圆上点到定点的距离平方,圆上的点到定点连线的斜率计算判断BC;根据赋值法验证计算判断D.【详解】对于A,已知正数,满足,设,则,其中,因为,所以的最大值为,A正确;对于B,表示圆上点到点距离的平方,圆的圆心到点的距离为,圆上一点到点的最大距离为(为圆的半径),则的最大值为36,B正确;对于C,表示圆上的点与点连线的斜率,设过点的直线方程为,即,当直线与圆相切时,圆心到直线的距离,解得,所以的最小值为,C错误;对于D,当时,,D错误.故选:AB.11.切比雪夫多项式()满足,其中,.例如,.关于,下列说法正确的有()A.的值域是 B.为偶函数C.有2025个零点 D.【答案】ACD【解析】【分析】令,则,则可求出值域判断A;结合新定义与诱导公式可判断BD;由,,先解得,再由且均不相等,判断D.【详解】因为满足,所以,令,则,A选项,,值域为,则值域为,故A正确;B选项,,即,则为奇函数,故B错误;C选项,令,,则,,,共有2025个解,且满足,由于在单调递减,则均不相等,则有2025个零点,故C正确;D选项,,故D正确;故选:ACD.非选择题部分(共92分)三、填空题:本大题共3小题,每题5分,共15分.12.一圆台的上下底面半径分别为1,2,高为,则圆台的侧面积是______.【答案】【解析】【分析】先根据已知条件求出圆台的母线长,再利用圆台侧面积公式求解.【详解】,母线长,.故答案为:.13.在三棱柱中,经过的平面将三棱柱分割成体积相等的两部分,设与棱相交于点,则______.【答案】1:1【解析】【分析】设三棱柱的高为,到底面的距离为,由经过的平面将三棱柱分割成体积相等的两部分,得到,利用锥体体积公式和柱体体积公式计算得解.【详解】设三棱柱高为,到底面的距离为,,,,,经过的平面将三棱柱分割成体积相等的两部分,,,,点为棱的中点,.故答案为:.14.已知,分别为双曲线的左右顶点,点为上一动点,为坐标原点,则的最小值是______.【答案】【解析】【分析】不妨设点在轴上或第一象限内,则,利用点坐标表示出,结合点在双曲线上消去,令,利用三角恒等变换化简,然后分离常数,利用基本不等式求解可得.【详解】根据对称性,不妨设点在轴上或第一象限内,则,,则.令,则,当且仅当,即时等号成立,所以,所以,即的最小值为.故答案为:四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知随机事件,满足,,.(1)判断与是否相互独立,并说明理由;(2)求与都不发生的概率.【答案】(1)与不相互独立;理由见解析(2)【解析】【分析】(1)由独立事件的定义即可判断;(2)先求或发生的概率,然后求出与都不发生的概率.【小问1详解】∵,∴,故与不相互独立;【小问2详解】或发生的概率,故与都不发生的概率.16.在空间直角坐标系中,不过原点的平面分别交坐标轴于点,,,点是在上的射影.求证:(1)是的垂心;(2).【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用数量积为0来证明线线垂直,可证明垂心;(2)利用空间向量法来求点到面的距离,即可求得.【小问1详解】由题意知所以,则,即.同理,所以是的垂心;小问2详解】由,,,得:设为平面的一个法向量,则令,则,即.所以.17.如图,在三棱锥中,,,,点,分别为棱,的中点.(1)求证:;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)取的中点,利用三角形中位线得到.由得到.同理,得到.利用线面垂直的判定定理得到证明,或用空间向量法证明;(2)由平面,利用面面垂直的判定定理得到平面平面,从而得到为直线与平面所成的角,求出,,的长度,利用余弦定理求出,从而得到直线与平面所成角的正弦值.或利用空间向量法证明.【小问1详解】法一:证明:取的中点,连结,.因点,分别为棱,的中点,故.又,故.同理,.又,为平面内两条相交直线,故平面.因此;法二:如图建立空间直角坐标系,则点,,,.设点,其中,则由,,得解得即.则,于是,因,故,即;【小问2详解】法一:因平面,故平面平面,又平面平面,过作交线的垂线,则此垂线垂直平面,因此为直线与平面所成的角.在中,,,在中,,则,在中,,,则,是中点,,,则,是的中点,,则,在中,,故,于是,所以直线与平面所成角的正弦值为.法二:,,,,设平面的法向量为,则,,取,解得,取.因此,所以直线与平面所成角的正弦值为.18.如图,点,都在抛物线上,且直线与抛物线在处的切线相互垂直.(1)求抛物线的焦点到准线的距离;(2)设点(),(ⅰ)用表示直线的方程;(ⅱ)求的最小值.【答案】(1)2(2)(ⅰ);(ⅱ)【解析】【分析】(1)由抛物线的定义即可得到结果;(2)(ⅰ)设切线方程,联立切线与抛物线方程并整理化简为一元二次方程,由方程只有一个解得到的关系,从而得到切线方程,由直线垂直可得到直线的方程;(ⅱ)联立直线的方程与抛物线方程,由交点弦长公式求得表达式,然后通过换元整理后利用基本不等式和配方法求得最小值.【小问1详解】抛物线的焦点到准线的距离;【小问2详解】(ⅰ)设抛物线在处的切线方程为,由得,则,即,于是,故抛物线在处的切线方程为,,因此直线的方程为,即.(ⅱ)联立直线与抛物线方程,得,故.令,则,,注意到,等号成立当且仅当.于是,所以的最小值为,此时.19.如图,从椭圆上一点(异于椭圆的左、右顶点)射出的光线照射到椭圆的右焦点上,经轴反射,反射光线过椭圆上的另一点.(1)写出的坐标;(2)证明:直线过定点;(3)、、、四点能否共圆?请说明理由.【答案】(1)(2)证明见解析(3)、、、四点不能共圆,理由见解析【解析】【分析】(1)求出、、的值,即可得出点的坐标;(2)由题可知直线的斜率存在且不为零,设直线的方程为,设点、,将该直线的方程与椭圆方程联立,由已知条件得出,结合韦达定理得出、所满足的关系式,化简直线的方程,即可求出直线所过定点的坐标;(3)求出线段、的中垂线的方程,将这两直线的方程联立,求出外心的横坐标,根据可得出结论.【小问1详解】在椭圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基孔肯雅热诊疗方案总结2026
- 道路安全培训目的
- 2026年鲁教版四年级英语上册月考题库试题附答案
- 道路交通安全云讲堂课件
- 道桥安全培训个人总结课件
- 2026年甘肃省兰州市高职单招职业适应性测试试题含答案
- 2025细胞因子吸附器在体外循环心脏手术中的应用课件
- 通信号lot设计技术笔试试题
- 车险小知识课件
- 车队年底安全培训内容课件
- 交警国省道巡逻管控课件
- DB11∕T 693-2024 施工现场临建房屋应用技术标准
- T/CSBME 065-2023医用敷料材料聚氨酯泡沫卷材
- T/CECS 10310-2023水性聚氨酯防水涂料
- T/CCT 007-2024煤化工废水处理运营能力评价
- GB/T 45554-2025种猪生产性能测定技术规范
- 食品居间合同协议
- 2022学年上海复旦附中高一(上)期末信息技术试题及答案
- 广东省广州市白云区2024-2025学年六年级(上)期末语文试卷(有答案)
- 心内科护理带教工作总结
- 知行合一实践出真知主题班会
评论
0/150
提交评论