版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省牡丹江市三中2026届数学高二上期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直,若点C到平面AB1D1的距离为,则直线与平面所成角的余弦值为()A. B.C. D.2.设为可导函数,且满足,则曲线在点处的切线的斜率是A. B.C. D.3.设等比数列的前项和为,若,,则()A.66 B.65C.64 D.634.数列中,满足,,设,则()A. B.C. D.5.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对6.若等比数列的前n项和,则r的值为()A. B.C. D.7.沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元 B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30 D.7月份的利润最大8.已知椭圆的两个焦点分别为,且平行于轴的直线与椭圆交于两点,那么的值为()A. B.C. D.9.焦点坐标为的抛物线的标准方程是()A. B.C. D.10.已知是等比数列,,,则()A. B.C. D.11.是等差数列,,,的第()项A.98 B.99C.100 D.10112.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.192
里 B.96
里C.48
里 D.24
里二、填空题:本题共4小题,每小题5分,共20分。13.命题“x≥1,x2-2x+4≥0”的否定为____________.14.若圆C的方程为,点P是圆C上的动点,点O为坐标原点,则的最大值为______15.若满足约束条件,则的最大值为_____________16.函数的单调递减区间是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知P,Q的坐标分别为,,直线PM,QM相交于点M,且它们的斜率之积是.设点M的轨迹为曲线C.(1)求曲线的方程;(2)设为坐标原点,圆的半径为1,直线:与圆相切,且与曲线交于不同的两点A,B.当,且满足时,求面积的取值范围.18.(12分)已知椭圆的左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程19.(12分)某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元)1819202122销量(册)6156504845(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.20.(12分)已知椭圆:()的左、右焦点分别为,焦距为,过点作直线交椭圆于两点,的周长为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆相交于两点,求定点与交点所构成的三角形面积的最大值.21.(12分)已知动点M到点F(0,2)的距离,与点M到直线l:y=﹣2的距离相等.(1)求动点M的轨迹方程;(2)若过点F且斜率为1的直线与动点M的轨迹交于A,B两点,求线段AB的长度.22.(10分)如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为ABC.已知,,M为AB中点.(1)证明:平面;(2)求此几何体的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先由等面积法求得的长,再以为坐标原点,建立如图所示的空间直角坐标系,运用线面角的向量求解方法可得答案【详解】如图,连接交于点,过点作于,则平面,则,设,则,则根据三角形面积得,代入解得以为坐标原点,建立如图所示的空间直角坐标系则,,设平面的法向量为,,,则,即,令,得,所以直线与平面所成的角的余弦值为,故选:2、D【解析】由题,为可导函数,,即曲线在点处的切线的斜率是,选D【点睛】本题考查导数的定义,切线的斜率,以及极限的运算,本题解题的关键是对所给的极限式进行整理,得到符合导数定义的形式3、B【解析】根据等比数列前项和的片段和性质求解即可.【详解】解:由题知:,,,所以,,成等比数列,即5,15,成等比数列,所以,解得.故选:B.4、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力5、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D6、B【解析】利用成等比数列来求得.【详解】依题意,等比数列的前n项和,,,所以.故选:B7、B【解析】根据图形和中位数、众数的概念依次判断选项即可.【详解】A:由图可知,月收入的最大值为90,最小值为30,故A正确;B:各个月的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,所以总利润为20+30+20+10+30+30+60+40+30+30+50+30=380(万元),故B错误;C:这12个月利润的中位数与众数均为30,故C正确;D:7月份的利润最大,为60万元,故D正确.故选:B8、A【解析】根据椭圆的方程求出,再由椭圆的对称性及定义求解即可.【详解】由椭圆的对称性可知,,所以,又椭圆方程为,所以,解得,所以,故选:A9、D【解析】依次确定选项中各个抛物线的焦点坐标即可.【详解】对于A,的焦点坐标为,A错误;对于B,的焦点坐标为,B错误;对于C,焦点坐标为,C错误;对于D,的焦点坐标为,D正确.故选:D.10、D【解析】由,,可求出公比,从而可求出等比数的通项公式,则可求出,得数列是一个等比数列,然后利用等比数的求和公式可求得答案【详解】由题得.所以,所以.所以,所以数列是一个等比数列.所以=.故选:D11、C【解析】等差数列,,中,,,由此求出,令,得到是这个数列的第100项【详解】解:等差数列,,中,,令,得是这个数列的第100项故选:C12、B【解析】由题可得此人每天走的步数等比数列,根据求和公式求出首项可得.【详解】由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得,解得,第此人第二天走里.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据还有一个量词的命题的否定的方法解答即可.【详解】命题“x≥1,x2-2x+4≥0”的否定为“”.故答案为:.14、##【解析】根据点与圆的位置关系求得正确答案.【详解】圆的方程可化为,所以圆心为,半径.由于,所以原点在圆外,所以最大值为.故答案为:15、【解析】由下图可得在处取得最大值,即.考点:线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型.考生应注总结解决线性规划问题的一般步骤(1)在直角坐标系中画出对应的平面区域,即可行域;(2)将目标函数变形为;(3)作平行线:将直线平移,使直线与可行域有交点,且观察在可行域中使最大(或最小)时所经过的点,求出该点的坐标;(4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出的最大(小)值.16、【解析】求导,根据可得答案.【详解】由题意,可得,令,即,解得,即函数的递减区间为.故答案为:.【点睛】本题考查运用导函数的符号,研究函数的单调性,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】【小问1详解】设点,则,整理得曲线的方程:【小问2详解】因为圆的半径为1,直线:与圆相切,则,,设,将代入得,,,,,所以,,因为,令,在上单调减,,所以18、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,该圆的半径,圆心坐标为,故动点的轨迹方程为.19、(1)(2)当单价应定为22.5元时,可获得最大利润【解析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.20、(1)(2)【解析】(1)根据题意可得,,再由,即可求解.(2)设直线的方程为,将直线与椭圆方程联立求得关于的方程,利用弦长公式求出,再利用点到直线的距离求出点到直线的距离,利用三角形的面积公式配方即可求解.【详解】解(1)由题意得:,,∴,∴∴椭圆的方程为(2)∵直线的斜率为,∴可设直线的方程为与椭圆的方程联立可得:①设两点的坐标为,由韦达定理得:,∴点到直线的距离,∴由①知:,,令,则,∴令,则在上的最大值为∴的最大值为综上所述:三角形面积的最大值2.【点睛】本题考查了根据求椭圆的标准方程,考查了直线与椭圆额位置关系中三角形面积问题,考查了学生的计算能力,属于中档题.21、(1)x2=8y(2)16【解析】小问1:由抛物线的定义可求得动点M的轨迹方程;小问2:可知直线AB的方程为y=x+2,设点A(x1,y1)、B(x2,y2),将直线AB的方程与抛物线的方程联立,求出y1+y2的值,利用抛物线的定义可求得|AB|的值.【小问1详解】由题意点M的轨迹是以F为焦点,直线l为准线的抛物线,所以,则p=4,所以动点M的轨迹方程是x2=8y;【小问2详解】由已知直线AB方程是y=x+2,设A(x1,y1)、B(x2,y2),由得x2﹣8x﹣16=0,,所以x1+x2=8,则y1+y2=x1+x2+4=12,故|AB|=y1+y2+4=1622、(1)证明见解析(2)【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年巴林右旗蒙医医院招聘备考题库含答案详解
- 2026年中国成套设备进出口集团有限公司招聘备考题库及一套参考答案详解
- 临海市2025年浙江临海市发展和改革局直属行政机构市价格监测与成本调查局及下属笔试历年参考题库典型考点附带答案详解(3卷合一)
- 东营2025年山东东营河口区事业单位招聘33人笔试历年典型考点题库附带答案详解
- 上海市2025上海船舶设备研究所硕士研究生招生笔试历年参考题库典型考点附带答案详解(3卷合一)
- 上海上海科学院2025年事业单位工作人员招聘8人(第四批)笔试历年典型考点题库附带答案详解
- 上海上海市工业技术学校工作人员招聘(第三批)笔试历年典型考点题库附带答案详解
- 上海2025年上海第二工业大学专职辅导员-心理中心教师招聘5人笔试历年典型考点题库附带答案详解
- 上海2025年上海大学招聘295人笔试历年难易错考点试卷带答案解析
- 2026年华电陕西能源有限公司校园招聘(第一批)笔试参考题库附带答案详解
- 2026年电信运营商物资管理岗位面试题
- 2025年高职会计(成本核算)试题及答案
- 虫鼠害培训课件
- 江苏省电影集团招聘笔试题库2026
- 2025学年上海市七年级语文上册作文题目汇编及解析
- 2026年河南经贸职业学院单招职业技能测试题库及参考答案详解
- ai写作与公文写作培训课件
- 栏杆安装施工方案示例
- JJF 2333-2025 恒温金属浴校准规范
- 2025年水工金属结构行业分析报告及未来发展趋势预测
- 软件产品项目管理方案
评论
0/150
提交评论