版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省黄山市屯溪区屯溪第一中学数学高二上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若椭圆上一点到C的两个焦点的距离之和为,则()A.1 B.3C.6 D.1或32.设,,,…,,,则()A. B.C. D.3.以原点为对称中心的椭圆焦点分别在轴,轴,离心率分别为,直线交所得的弦中点分别为,,若,,则直线的斜率为()A. B.C. D.4.如图,在长方体中,,,则直线和夹角的余弦值为()A. B.C. D.5.如图在平行六面体中,与的交点记为.设,,,则下列向量中与相等的向量是()A. B.C. D.6.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.7.已知直线与x轴,y轴分别交于A,B两点,且直线l与圆相切,则的面积的最小值为()A.1 B.2C.3 D.48.已知,是圆上的两点,是直线上一点,若存在点,,,使得,则实数的取值范围是()A. B.C. D.9.已知条件,条件表示焦点在x轴上的椭圆,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件10.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.11.五行学说是中华民族创造的哲学思想.古代先民认为,天下万物皆由五种元素组成,分别是金、木、水、火、土,彼此之间存在如图所示的相生相克关系.若从金、木、水、火、土五种元素中任取两种,则这两种元素恰是相生关系的概率是()A. B.C. D.12.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用秦九韶算法求函数,当时的值时,___________14.圆和圆的公切线的条数为______15.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,,若,则两圆圆心的距离___________16.已知,命题p:,;命题q:,,且为真命题,则a的取值范围为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.18.(12分)如图,四棱锥中,侧面是边长为4的正三角形,且与底面垂直,底面是菱形,且,为的中点(1)求证:;(2)求点到平面的距离19.(12分)在三棱柱中,侧面正方形的中心为点平面,且,点满足(1)若平面,求的值;(2)求点到平面的距离;(3)若平面与平面所成角的正弦值为,求的值20.(12分)已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,直线经过,倾斜角为与双曲线交于两点,求的面积.21.(12分)如图所示,在四棱锥中,平面,底面是等腰梯形,.且(1)证明:平面平面;(2)若,求平面与平面的夹角的余弦值22.(10分)已知函数R)(1)当时,求函数的图象在处的切线方程;(2)求的单调区间
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】讨论焦点的位置利用椭圆定义可得答案.【详解】若,则由得(舍去);若,则由得故选:B.2、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B3、A【解析】分类讨论直线的斜率存在与不存在两种情况,联立直线与曲线方程,再根据,求解.【详解】设椭圆的方程分别为,,由可知,直线的斜率一定存在,故设直线的方程为.联立得,故,;联立得,则,.因为,所以,所以.又,所以,所以,所以,.故选:A.【点睛】此题利用设而不求的方法,找出、、、之间的关系,化简即可得到的值.此题的难点在于计算量较大,且容易计算出错.4、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.5、B【解析】利用空间向量的加法和减法法则可得出关于、、的表达式.【详解】故选:B.6、B【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B7、A【解析】由直线与圆相切可得,再利用基本不等式即求.【详解】由已知可得,,因为直线与圆相切,所以,即,因为,当且仅当时取等号,所以,,所以面积的最小值为1.故选:A8、B【解析】确定在以为直径的圆上,,根据均值不等式得到圆上的点到的最大距离为,得到,解得答案.【详解】,故在以为直径的圆上,设中点为,则,圆上的点到的最大距离为,,当时等号成立.直线到原点的距离为,故.故选:B.9、A【解析】根据条件,求得a的范围,根据充分、必要条件的定义,即可得答案.【详解】因为条件表示焦点在x轴上的椭圆,所以,解得或,所以条件是条件q:或的充分不必要条件.故选:A10、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.11、C【解析】先计算从金、木、水、火、土五种元素中任取两种的所有基本事件数,再计算其中两种元素恰是相生关系的基本事件数,利用古典概型概率公式,即得解【详解】由题意,从金、木、水、火、土五种元素中任取两种,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10个基本事件,其中两种元素恰是相生关系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5个基本事件,所以所求概率.故选:C12、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】利用秦九韶算法的定义计算即可.【详解】故答案为:014、3【解析】判断出两个圆的位置关系,由此确定公切线的条数.内含关系0条公切线,内切关系1条公切线,相交关系2条公切线,外切关系3条公切线,外离关系4条公切线。【详解】由题知圆:的圆心,半径,圆:的圆心,半径,所以,,所以两圆外切,所以两圆共有3条公切线.故答案为:315、【解析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得【详解】∵,球半径为4,∴小圆的半径为,∵小圆中弦长,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案为:.16、【解析】先求出命题p,q为真命题时的a的取值范围,根据为真可知p,q都是真命题,即可求得答案.【详解】命题p:,为真时,有,命题q:,为真时,则有,即,故为真命题时,且,即,故a的取值范围为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.18、(1)证明见解析;(2).【解析】(1)取的中点,连接,,,先证明平面,再由平面得,(2)等体积法求解.根据题目条件,先证明为三棱锥的高,再求出以为顶点,为底面的三棱锥的体积和以为顶点,为底面的三棱锥的体积,根据,求点到平面的距离.【详解】(1)证明:如图,取的中点,连接,,依题意可知,,均为正三角形,∴,又∵,∴平面又平面,∴(2)由(1)可知,∵平面平面,平面平面,平面,∴平面,即为三棱锥的高由题意得,∵为的中点,∴在中,,∴,,∴在中,边上的高,∴的面积的面积点到平面的距离即点到平面的距离设点到平面的距离为,由,得,即,解得,即点到平面的距离为19、(1);(2);(3)或.【解析】(1)连接ME,证明即可计算作答.(2)以为原点,的方向分别为轴正方向建立空间直角坐标系,借助空间向量计算点到平面的距离即可.(3)由(2)中空间直角坐标系,借助空间向量求平面与平面所成角的余弦即可计算作答.【小问1详解】在三棱柱中,因,即点在上,连接ME,如图,因平面面,面面,则有,而为中点,于是得为的中点,所以.【小问2详解】在三棱柱中,面面,则点到平面的距离等于点到平面的距离,又为正方形,即,而平面,以为原点,的方向分别为轴正方向建立空间直角坐标系,如图,依题意,,则,,设平面的法向量为,则,令,得,又,则到平面的距离,所以点到平面的距离为.【小问3详解】因,则,,设面的法向量为,则,令,得,于是得,而平面与平面所成角的正弦值为,则,即,整理得,解得或,所以的值是或.【点睛】易错点睛:空间向量求二面角时,一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.20、(1);(2).【解析】(1)由两条双曲线有共同渐近线,可令双曲线方程为,求出即可得双曲线的方程;(2)根据已知有直线为,由其与双曲线的位置关系,结合弦长公式、点线距离公式及三角形面积公式求的面积.【详解】(1)设所求双曲线方程为,代入点得:,即,∴双曲线方程为,即.(2)由(1)知:,即直线方程为.设,联立得,满足且,,由弦长公式得,点到直线的距离.所以【点睛】本题考查了双曲线,根据双曲线共渐近线求双曲线方程,由直线与双曲线的相交位置关系求原点与交点构成三角形的面积,综合应用了弦长公式、点线距离公式、三角形面积公式,属于基础题.21、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直线为轴建立空间直角坐标系.求出平面的一个法向量、平面的法向量,由二面角的空间向量求法可得答案.【小问1详解】因为四边形是等腰梯形,,所以,所以,即因为平面,所以,又因为,所以平面,因为平面,所以平面平面【小问2详解】以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 审议使用方案范文
- 车险个销组训培训课件
- 广东省建设协会空气检测试题
- 车间部门安全培训课件
- 车间统计员培训课件
- 酒店客房设施设备维护与保养制度
- 酒店设备设施采购制度
- 车间级复工复产安全培训
- 银行资产配置与投资制度
- 车间班长教学培训课件
- 畜牧技术员安全培训效果测试考核试卷含答案
- 2026年湖南邮电职业技术学院单招职业技能考试参考题库附答案详解
- 小学三年级语文上册期末复习知识点总结课件
- 2026年Q1电商店铺运营非遗文化商品上架调研
- 2025-2026学年北师大版高二数学上学期期末常考题之随机事件的条件概率
- 2026年小学一二年级第一学期无纸笔化考核方案及测试题(一二年级语文数学)
- 2025四川金融控股集团有限公司招聘16人笔试参考题库附带答案详解(3卷合一)
- 2025年人文常识竞赛题库及答案
- 2025年时事政治试题库完整参考详解(完整版)及答案
- 学校副校长中层干部和群团组织负责人绩效考核实施细则
- 新车交车课件
评论
0/150
提交评论