湖南省邵东县创新实验学校2026届高一数学第一学期期末达标检测模拟试题含解析_第1页
湖南省邵东县创新实验学校2026届高一数学第一学期期末达标检测模拟试题含解析_第2页
湖南省邵东县创新实验学校2026届高一数学第一学期期末达标检测模拟试题含解析_第3页
湖南省邵东县创新实验学校2026届高一数学第一学期期末达标检测模拟试题含解析_第4页
湖南省邵东县创新实验学校2026届高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵东县创新实验学校2026届高一数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则的大小关系为()A. B.C. D.2.已知集合,则()A. B.C. D.3.设,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.如图,在中,点是线段及、的延长线所围成的阴影区域内(含边界)的任意一点,且,则在直角坐标平面上,实数对所表示的区域在直线的右下侧部分的面积是()A. B.C. D.不能求5.已知平面向量,,若,则实数的值为()A.0 B.-3C.1 D.-16.过点和,圆心在轴上的圆的方程为A. B.C D.7.已知角的终边经过点P,则()A. B.C. D.8.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为()A.1.01米 B.1.76米C.2.04米 D.2.94米9.已知圆上的一段弧长等于该圆的内接正方形的边长,则这段弧所对的圆周角的弧度数为()A. B.C. D.10.函数图象大致是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为______12.函数是幂函数,且在上是减函数,则实数__________.13.已知集合,,则=______14.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限的角,且,则;④直线是函数的一条对称轴;⑤函数的图像关于点成对称中心图形.其中正确命题序号是__________.15.已知,则_____.16.函数的最大值是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是PA,BC的中点,且AD=2PD=2(1)求证:MN∥平面PCD;(2)求证:平面PAC⊥平面PBD;(3)求四棱锥P-ABCD的体积18.已知定义在R上的函数(1)若,判断并证明的单调性;(2)解关于x的不等式.19.已知全集,集合,集合.(1)求;(2)若集合,且集合与集合满足,求实数的取值范围.20.某市有A、B两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内含20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时设在A俱乐部租一块场地开展活动x小时的收费为元,在B俱乐部租一块场地开展活动x小时的收费为元,试求与的解析式;问该企业选择哪家俱乐部比较合算,为什么?21.已知,,(1)值;(2)的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用指数函数和对数函数的单调性即可判断.【详解】,,,,.故选:D.2、D【解析】由交集的定义求解即可【详解】,由题意,作数轴如图:故,故选:D.3、C【解析】根据一元二次不等式的解法,结合充分性、必要性的定义进行判断即可.【详解】由,由不一定能推出,但是由一定能推出,所以“”是“”的必要不充分条件,故选:C4、A【解析】由点是由线段及、的延长线所围成的阴影区域内(含边界)的任意一点,作的平行线,把中、所满足的不等式表示出来,然后作出不等式组所表示的可行域,并计算出可行域在直线的右下侧部分的面积即可.【详解】如下图,过作,交的延长线于,交的延长线于,设,,,,则,所以,得,所以.作出不等式组对应的可行域,如下图中阴影部分所示,故所求面积为,故选:A.【点睛】本题考查二元一次不等式组与平面区域的关系,考查转化思想,是难题.解决本题的关键是建立、的不等式组,将问题转化为线性规划问题求解.5、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.6、D【解析】假设圆心坐标,利用圆心到两点距离相等可求得圆心,再利用两点间距离公式求得半径,从而得到圆的方程.【详解】设圆心坐标为:则:,解得:圆心为,半径所求圆的方程为:本题正确选项:【点睛】本题考查已知圆心所在直线和圆上两点求解圆的方程的问题,属于基础题.7、B【解析】根据三角函数的定义计算,即可求得答案.【详解】角终边过点,,,故选:B.8、B【解析】先由题意求出“弓”所在的弧长所对的圆心角,然后利用三角函数求弦长【详解】由题意得,“弓”所在的弧长为,所以其所对的圆心角的绝对值为,所以两手之间的距离故选:B9、C【解析】求出圆内接正方形边长(用半径表示),然后由弧度制下角的定义可得【详解】设此圆的半径为,则正方形的边长为,设这段弧所对的圆周角的弧度数为,则,解得,故选:C.【点睛】本题考查弧度制下角的定义,即圆心角等于所对弧长除以半径.本题属于简单题10、A【解析】利用函数的奇偶性排除部分选项,再利用当x>0时,函数值的正负确定选项即可.【详解】函数f(x)定义域为,所以函数f(x)是奇函数,排除BC;当x>0时,,排除D故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由对数的真数大于零、二次根式的被开方数非负,分式的分母不为零,列不等式组可求得答案【详解】由题意得,解得,所以函数的定义域为,故答案为:12、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:213、{-1,1,2};【解析】=={-1,1,2}14、④⑤【解析】根据两角和与差的正弦公式可得到sinα+cosαsin(α)结合正弦函数的值域可判断①;根据诱导公式得到=sinx,再由正弦函数的奇偶性可判断②;举例说明该命题正误可判断③;x代入到y=sin(2xπ),根据正弦函数的对称性可判断④;x代入到,根据正切函数的对称性可判断⑤.【详解】对于①,sinα+cosαsin(α),故①错误;对于②,=sinx,其为奇函数,故②错误;对于③,当α、β时,α、β是第一象限的角,且α>β,但sinα=sinβ,故③错误;对于④,x代入到y=sin(2xπ)得到sin(2π)=sin1,故命题④正确;对于⑤,x代入到得到tan()=0,故命题⑤正确.故答案为④⑤【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的化简与求值问题,是综合性题目15、3【解析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【详解】因,所以.故答案为:3.16、【解析】把函数化为的形式,然后结合辅助角公式可得【详解】由已知,令,,,则,所以故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)【解析】(1)先证明平面MEN∥平面PCD,再由面面平行的性质证明MN∥平面PCD;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PBD;(3)利用锥体的体积公式计算即可【详解】(1)证明:取AD的中点E,连接ME、NE,∵M、N是PA、BC的中点,∴在△PAD和正方形ABCD中,ME∥PD,NE∥CD;又∵ME∩NE=E,PD∩CD=D,∴平面MEN∥平面PCD,又MN⊂平面MNE,∴MN∥平面PCD;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,又∵PD⊥底面ABCD,∴PD⊥AC,且PD∩BD=D,∴AC⊥平面PBD,∴平面PAC⊥平面PBD;(3)∵PD⊥底面ABCD,∴PD是四棱锥P-ABCD的高,且PD=1,∴正方形ABCD的面积为S=4,∴四棱锥P-ABCD的体积为VP-ABCD=×S四边形ABCD×PD=×4×1=【点睛】本题考查了空间中的平行与垂直关系的应用问题,也考查了锥体体积计算问题,是中档题18、(1)在定义域R内单调递增;证明见解析(2)答案见解析【解析】(1)根据题意,利用待定系数法求出的值,即可得函数的解析式,利用作差法分析可得结论;(2)根据题意,,即,求出的取值范围,按的取值范围分情况讨论,求出不等式的解集,即可得答案【小问1详解】若,则a=3,,在定义域R内单调递增;证明如下:任取,,且.则,根据单调递增的定义可知在定义域R内单调递增;【小问2详解】由,即,即,得,当a>1时,的解为;当0<a<1时,的解为.综上所述,当a>1时,原不等式的解为;当0<a<1时,原不等式的解为.19、(1);(2)【解析】(1)化简集合,按照补集,并集定义,即可求解;(2),得,结合数轴,确定集合端点位置,即可求解.【详解】(1)∵;∴;∴;(2)∵,∴;∴,∴,∴实数的取值范围为.【点睛】本题考查集合间的运算,以及由集合关系求参数,属于基础题.20、(1)(2)当时,选A家俱乐部合算,当时,两家俱乐部一样合算,当时,选B家俱乐部合算【解析】(1)根据题意求出函数的解析式即可;(2)通过讨论x的范围,判断f(x)和g(x)的大小,从而比较结果即可【详解】由题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论