版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省黄山市屯溪区第一中学数学高二上期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点为,准线为,焦点在准线上的射影为点,过任作一条直线交抛物线于两点,则为()A.锐角 B.直角C.钝角 D.锐角或直角2.若点,在抛物线上,是坐标原点,若等边三角形的面积为,则该抛物线的方程是()A. B.C. D.3.在等比数列中,,,则等于A. B.C. D.或4.已知椭圆上一点到椭圆一个焦点的距离是3,则点到另一个焦点的距离为()A.9 B.7C.5 D.35.某工厂去年的电力消耗为千瓦,由于设各更新,该工厂计划每年比上一年的电力消耗减少,则从今年起,该工厂第5年消耗的电力为()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦6.等差数列中,是的前项和,,则()A.40 B.45C.50 D.557.设x∈R,则x<3是0<x<3的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.已知命题:,命题:,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知直线,若异面,,则的位置关系是()A.异面 B.相交C.平行或异面 D.相交或异面10.已知命题:,;命题:在中,若,则,则下列命题为真命题的是()A. B.C. D.11.在平行六面体中,,,,则()A. B.5C. D.312.命题“,”的否定是A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.直线过抛物线的焦点F,且与C交于A,B两点,则___________.14.已知空间直角坐标系中,点,,若,与同向,则向量的坐标为______.15.若命题“”是假命题,则a的取值范围是_______.16.函数的图象在点处的切线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点在椭圆C上.(1)求椭圆C的标准方程;(2)已知直线与椭圆C交于P,Q两点,点M是线段PQ的中点,直线过点M,且与直线l垂直.记直线与y轴的交点为N,求的取值范围.18.(12分)如图,已知椭圆:()的左、右焦点分别为、,离心率为.过的直线与椭圆的一个交点为,过垂直于的直线与椭圆的一个交点为,.(1)求椭圆的方程和点的轨迹的方程;(2)若曲线上的动点到直线:的最大距离为,求的值.19.(12分)在平面直角坐标系中,已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的直角坐标为,直线与曲线的交点为,求的值.20.(12分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和21.(12分)已知的顶点,边上的中线所在直线方程为,边上的高所在直线方程为.求:(1)顶点的坐标;(2)直线的方程.22.(10分)已知椭圆过点,且离心率,为坐标原点.(1)求椭圆的方程;(2)判断是否存在直线,使得直线与椭圆相交于两点,直线与轴相交于点,且满足,若存在,求出直线的方程;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设出直线方程,联立抛物线方程,利用韦达定理,求得,根据其结果即可判断和选择.【详解】为说明问题,不妨设抛物线方程,则,直线斜率显然不为零,故可设直线方程为,联立,可得,设坐标为,则,故,当时,,;当时,,;故为锐角或直角.故选:D.2、A【解析】根据等边三角形的面积求得边长,根据角度求得点的坐标,代入抛物线方程求得的值.【详解】设等边三角形的边长为,则,解得根据抛物线的对称性可知,且,设点在轴上方,则点的坐标为,即,将代入抛物线方程得,解得,故抛物线方程为故选:A3、D【解析】∵为等比数列,∴,又∴为的两个不等实根,∴∴或∴故选D4、A【解析】根据椭圆定义求得即可.【详解】由椭圆定义知,点P到另一个焦点的距离为2×6-3=9.故选:A5、D【解析】根据等比数列的定义进行求解即可.【详解】因为去年的电力消耗为千瓦,工厂计划每年比上一年的电力消耗减少,所以今年的电力消耗为,因此从今年起,该工厂第5年消耗的电力为,故选:D6、B【解析】应用等差数列的性质“若,则”即可求解【详解】故选:B7、B【解析】利用充分条件、必要条件的定义可得出结论.【详解】,因此,“”是“”必要不充分条件.故选:B.8、B【解析】利用充分条件和必要条件的定义判断.【详解】因为命题:或,命题:,所以是的必要不充分条件,故选:B9、D【解析】以正方体为载体说明即可.【详解】如下图所示的正方体:和是异面直线,,;和是异面直线,,与是异面直线.所以两直线与是异面直线,,则的位置关系是相交或异面.故选:D10、C【解析】分别求得的真假性,从而确定正确答案.【详解】对于,由于,所以为假命题,为真命题.对于,在三角形中,,由正弦定理得,所以为真命题,为假命题.所以为真命题,、、为假命题.故选:C11、B【解析】由,则结合已知条件及模长公式即可求解.【详解】解:,所以,所以,故选:B.12、C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题的否定是“”.本题选择C选项.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】由题意,求出,然后联立直线与抛物线方程,由韦达定理及即可求解.【详解】解:因为抛物线的焦点坐标为,又直线过抛物线的焦点F,所以,抛物线的方程为,由,得,所以,所以.故答案为:8.14、【解析】求出坐标,根据给条件表示出坐标,利用向量模的坐标表示计算作答.【详解】因,,则,因与同向,则设,因此,,于是得,解得,则,所以向量的坐标为.故答案为:15、【解析】依题意可得是真命题,参变分离得到,再利用基本不等式计算可得;【详解】解:因为命题“”是假命题,所以命题“”是真命题,即,所以,因为,当且仅当即时取等号,所以,即故答案:16、【解析】求出、的值,利用点斜式可得出所求切线的方程.【详解】因为,则,所以,,,故所求切线方程为,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出后可得椭圆的方程.(2)联立直线的方程和椭圆方程,消去后利用韦达定理可用表示,利用换元法和二次函数的性质可求的取值范围.小问1详解】由题意可得,解得,.故椭圆C的标准方程为.【小问2详解】设,,.联立,整理得,则,解得,从而,.因为M是线段PQ的中点,所以,则,故.直线的方程为,即.令,得,则,所以.设,则,故.因为,所以,所以.18、(1)椭圆的方程为,点的轨迹的方程为(2)【解析】(1)由题意可得,求出,再结合,求出,从而可得椭圆的方程,设,则由题意可得,坐标代入化简可得点的轨迹的方程,(2)由题意结合点到直线的距离公式可得,设,将直线方程代入椭圆方程中消去,整理利用根与系数的关系,由,可得,因为,代入化简计算可求得答案【小问1详解】由题意得,解得,则,所以椭圆的方程,设,则由题意可得,所以,所以,所以点轨迹的方程为【小问2详解】由(1)知曲线是以原点为圆心,1为半径的圆,因为曲线上的动点到直线:的最大距离为,所以,得,设,由,得,所以,,因为,所以,所以,所以,因为,所以,所以,,所以,得,得(舍去),或19、(1);(2)3.【解析】(1)把展开得,两边同乘得,再代极坐标公式得曲线的直角坐标方程.(2)将代入曲线C的直角坐标方程得,再利用直线参数方程t的几何意义和韦达定理求解.【详解】(1)把展开得,两边同乘得①将代入①,即得曲线的直角坐标方程为②(2)将代入②式,得,点M的直角坐标为(0,3),设这个方程的两个实数根分别为t1,t2,则∴t1<0,t2<0则由参数t的几何意义即得.【点睛】本题主要考查极坐标和直角坐标的互化、直线参数方程t的几何意义,属于基础题.20、(1)或(2)【解析】(1)利用等差数列通项公式,可构造方程组求得,由此可得通项公式;(2)由(1)可得,利用分组求和法,结合等差等比求和公式可得结果.【小问1详解】设等差数列的公差为,则,解得:或,当时,;当时,.综上,或【小问2详解】由(1)当数列为递增数列,则,设,.21、(1);(2).【解析】(1)求出直线的方程,然后联立直线、的方程,即可求得点的坐标;(2)设,可求得线段的中点的坐标,将点的坐标代入直线的方程,可求得的值,可得出点的坐标,进而利用直线的斜率和点斜式可得出直线的方程.【小问1详解】解:,所以,而,则,所以直线的方程为,由,解得,所以顶点的坐标为.【小问2详解】解:因为在直线,所以可设,由为线段的中点,所以,将的坐标代入直线的方程,所以,解得,所以.故,故直线的方程为,即.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车险知识课件培训
- 车间级安全培训教育内容课件
- 2025年学校预防校园欺凌工作总结范本(3篇)
- 车间碰撞事故安全培训课件
- 2026年广东深圳市高职单招职业适应性测试试题解析及答案
- 药物外渗高级护理2026
- 车间工人安全事故培训课件
- 车间安全培训问答题课件
- 糖尿病患者血脂管理指南2026
- 车间安全员消防培训记录课件
- 2025-2026学年苏教版(2024)小学科学二年级上册期末测试卷附答案(共三套)
- 垃圾清运补充合同范本
- 2026届湖南省长沙市长郡集团九年级物理第一学期期末预测试题含解析
- 上海市旅馆从业人员考试及答案解析
- 生日主题宴会设计方案
- 《JJG 1081.1-2024铁路机车车辆轮径量具检定规程 第1部分:轮径尺》 解读
- 《基坑围护结构渗漏检测技术标准》
- 代办营业执照合同模板范文
- 职业教育示范性教师教学创新团队建设方案
- 防暴演练安全培训课件
- 基础越南语1课件
评论
0/150
提交评论