版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
肇庆市高中毕业班2026届高二上数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程表示焦点在x轴上的椭圆”的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件2.双曲线的离心率为,则其渐近线方程为A. B.C. D.3.已知公比不为1的等比数列,其前n项和为,,则()A.2 B.4C.5 D.254.已知命题对任意,总有;是方程的根则下列命题为真命题的是A. B.C. D.5.如图,在直三棱柱中,,,D为AB的中点,点E在线段上,点F在线段上,则线段EF长的最小值为()A B.C.1 D.6.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.37.若,则的虚部为()A. B.C. D.8.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有()种A.54 B.72C.96 D.1209.在中,角、、所对的边分别是、、.已知,,且满足,则的取值范围为()A. B.C. D.10.已知直线,若直线与垂直,则的倾斜角为()A. B.C. D.11.已知数列的通项公式为,其前项和为,则满足的的最小值为()A.30 B.31C.32 D.3312.双曲线:的一条渐近线与直线垂直,则它的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列中,,,则_______.14.命题“若,则”的逆否命题为______15.点到直线的距离为________.16.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.用一点(或一个小石子)代表1,两点(或两个小石子)代表2,三点(或三个小石子)代表3,…他们研究了各种平面数(包括三角形数、正方形数、长方形数、五边形数、六边形数等等)和立体数(包括立方数、棱锥数等等).如前四个四棱锥数为第n个四棱锥数为1+4+9+…+n2=.中国古代也有类似的研究,如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…若一个“三角垛”共有20层,则第6层有____个球,这个“三角垛”共有______个球三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示在多面体中,平面,四边形是正方形,,,,.(1)求证:直线平面;(2)求平面与平面夹角的余弦值.18.(12分)已知数列满足,,,n为正整数.(1)证明:数列是等比数列,并求通项公式;(2)证明:数列中的任意三项,,都不成等差数列;(3)若关于正整数n的不等式的解集中有且仅有三个元素,求实数m的取值范围;19.(12分)已知公差不为0的等差数列的前项和为,且,,成等比数列,且.(1)求的通项公式;(2)若,求数列的前n项和.20.(12分)已知圆心为的圆过原点,且直线与圆相切于点.(1)求圆的方程;(2)已知过点的直线的斜率为,且直线与圆相交于两点.①若,求弦的长;②若圆上存在点,使得成立,求直线的斜率.21.(12分)某工厂为了解甲、乙两条生产线所生产产品的质量,分别从甲、乙两条生产线生产的产品中各随机抽取了1000件产品,并对所抽取产品的某一质量指数进行检测,根据检测结果按分组,得到如图所示的频率分布直方图,若该工厂认定产品的质量指数不低于6为优良级产品,产品的质量指数在内时为优等品.(1)用统计有关知识判断甲、乙两条生产线所生产产品的质量哪一条更好,并说明理由(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从该工厂样品的优等品中抽取6件产品,在这6件产品中随机抽取2件,求抽取到的2件产品都是甲生产线生产的概率.22.(10分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由椭圆的标准方程结合充分必要条件的定义即得.【详解】若,则方程表示焦点在轴上的椭圆;反之,若方程表示焦点在轴上的椭圆,则;所以“”是“方程表示焦点在x轴上的椭圆”的充要条件.故选:A.2、A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.3、B【解析】设等比数列的公比为,根据求得,从而可得出答案.【详解】解:设等比数列的公比为,则,所以,则.故选:B.4、A【解析】由绝对值的意义可知命题p为真命题;由于,所以命题q为假命题;因此为假命题,为真命题,“且”字联结的命题只有当两命题都真时才是真命题,所以答案选A5、B【解析】根据给定条件建立空间直角坐标系,令,用表示出点E,F坐标,再由两点间距离公式计算作答.【详解】依题意,两两垂直,建立如图所示的空间直角坐标系,则,,设,则,设,有,线段EF长最短,必满足,则有,解得,即,因此,,当且仅当时取“=”,所以线段EF长的最小值为.故选:B6、D【解析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D7、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A8、A【解析】根据题意,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,剩下的三人安排在其他三个名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案【详解】根据题意,甲乙都没有得到冠军,而乙不是最后一名,分2种情况讨论:①甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;②甲不是最后一名,甲乙需要排在第二、三、四名,有种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;则一共有种不同的名次情况,故选:A9、D【解析】利用正弦定理边角互化思想化简得出,利用余弦定理化简得出,结合,根据函数在上的单调性可求得的取值范围.【详解】且,所以,由正弦定理得,即,,,所以,,则,由余弦定理得,,则,由于双勾函数在上单调递增,则,即,所以,.因此,的取值范围为.故选:D.【点睛】本题考查三角形内角余弦值的取值范围的求解,考查了余弦定理以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.10、D【解析】由直线与垂直得到的斜率,再利用斜率与倾斜角的关系即可得到答案.【详解】因为直线与垂直,且,所以,解得,设的倾斜角为,,所以.故选:D11、C【解析】由条件可得得出,再由解出的范围,得出答案.【详解】由,则由,即,即,所以所以满足的的最小值为为32故选:C12、A【解析】先利用直线的斜率判定一条渐近线与直线垂直,求出,再利用双曲线的离心率公式和进行求解.【详解】因为直线的斜率为,所以双曲线的一条渐近线与直线垂直,所以,即,则双曲线的离心率.故选:A.卷II(非选择题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:14、若,则【解析】否定原命题条件和结论,并将条件与结论互换,即可写出逆否命题.【详解】由逆否命题的定义知:原命题的逆否命题为“若,则”.故答案为:若,则.15、【解析】利用点到直线的距离公式即可得出【详解】利用点到直线的距离可得:故答案为:16、①.21②.1540【解析】根据题中给出的图形,结合题意找到各层球的数列与层数的关系,得到=,由此可求的值,以及前20层的总球数【详解】由题意可知,,故==,所==21,所以S20=a1+a2+a3+a4+⋯⋯+a20=(12+22+32+⋯⋯+202)+(1+2+3+⋯⋯+20)=×+×=1540故答案为:21;1540三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,利用空间向量法可证明出直线平面;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】证明:因为平面,,以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,则、、、、、,所以,,,设平面的法向量为,依题意有,即,令,可得,,则,平面,因此,平面.【小问2详解】解:由题,,设平面的法向量为,依题意有,即,取,可得,,因此,平面与平面的夹角余弦值为.18、(1)证明见解析;(2)证明见解析(3)【解析】(1)将所给等式变形为,根据等比数列的定义即可证明结论;(2)假设存在,,成等差数列,根据等差数列的性质可推出矛盾,故说明假设错误。从而证明原结论;(3)求出n=1,2,3,4时的情况,再结合时,,即可求得结果.【小问1详解】由已知可知,显然有,否则数列不可能是等比数列;因为,,故可得,由得:,即有,所以数列等比数列,且;【小问2详解】假设存在,,成等差数列,则,即,整理得,即,而是奇数,故上式左侧是奇数,右侧是一个偶数,不可能相等,故数列中的任意三项,,都不成等差数列;【小问3详解】关于正整数n的不等式,即,当n=1时,;当n=2时,;当n=3时,;当n=4时,,并且当时,,因关于正整数n的不等式的解集中有且仅有三个元素,故.19、(1)(2)【解析】(1)根据等差数列的通项公式和等比中项,可得,再根据等差数列的前项和公式,即可求出,,进而求出结果;(2)由(1)得,结合等比数列前项和公式和对数运算性质,利用分组求和,即可求出结果.【小问1详解】解:设的公差为,由,,成等比数列可知,即,化简得.由可得,所以.将代入,得,,所以.小问2详解】解:由(1)得,所以.20、(1);(2)①,②.【解析】(1)圆心在线段的垂直平分线上,圆心也在过点且与垂直的直线上,联立求圆心,进而得半径即可;(2)①垂径定理即可求弦长;②圆上存在点,使得成立,即四边形是平行四边形,又,有都是等边三角形,进而得圆心到直线的距离为,列方程求解即可.试题解析:(1)由已知得,圆心在线段的垂直平分线上,圆心也在过点且与垂直的直线上,由得圆心,所以半径,所以圆的方程为;(2)①由题意知,直线的方程为,即,∴圆心到直线的距离为,∴;②∵圆上存在点,使得成立,∴四边形是平行四边形,又,∴都是等边三角形,∴圆心到直线的距离为,又直线的方程为,即,∴,解得.21、(1)甲更好,详细见解析(2)【解析】(1)根据频率分布直方图计算甲、乙两条生产线所生产产品的质量指数的平均数,比较大小即可得答案;(2)由题意可知,甲、乙生产线的样品中优等品件数,利用分层抽样可得从甲生产线的样品中抽取的优等品有件件,记为,从乙生产线的样品中抽取的优等品有件,记为;列出抽取到的2件产品的所有基本事件,根据古典概型计算即可.【小问1详解】解:甲生产线所生产产品的质量指数的平均数为:=3×0.05×2+5×0.15×2+7×0.2×2+9×0.1×2=6.4;乙生产线所生产产品的质量指数的平均数为:=3×0.15×2+5×0.1×2+7×0.2×2+9×0.05×2=5.6因为,所以甲生产线生产产品质量的平均水平高于乙生产线生产产品质量的平均水平,故甲生产线所生产产品的质量更好.【小问2详解】由题意可知,甲生产线的样品中优等品有件,乙生产线的样品中优等品有件,从甲生产线的样品中抽取的优等品有件件,记为,从乙生产线的样品中抽取的优等品有件,记为;从这6件产品中随机抽取2件的情况有:(a,b),(a,c),(a,d),(a,E),(a,F),(b,c),(b,d),(b,E),(b,F),(c,d),(c,E),(c,F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025成都农商银行产业金融岗社会招聘10人考试题库附答案
- 2025年广西崇左凭祥市公安局面向社会公开招聘警务辅助人员61人备考题库附答案
- 2026重庆医科大学附属大足医院招聘4人笔试备考试题及答案解析
- 2026台州市计量技术研究院编外招聘1人笔试备考题库及答案解析
- 2026年昆明冶金高等专科学校高职单招职业适应性测试模拟试题有答案解析
- 2026重庆市城投路桥管理有限公司食堂炊事员岗位2人笔试参考题库及答案解析
- (能力提升)2025-2026学年下学期人教统编版小学语文五年级第一单元练习卷
- 2026年《东方烟草报》社有限公司高校毕业生招聘(3名)笔试备考试题及答案解析
- 2026年安徽工贸职业技术学院单招职业技能考试参考题库带答案解析
- 2026福建石狮国有投资发展集团有限责任公司招聘2人笔试参考题库及答案解析
- 高二化学上学期期末试题带答案解析
- 高标准农田建设培训课件
- 体检中心收费与财务一体化管理方案
- 解答题 概率与统计(专项训练12大题型+高分必刷)(原卷版)2026年高考数学一轮复习讲练测
- 2024-2025学年北京市海淀区第二十中学高二上学期期末物理试题(含答案)
- 金属加工工艺规划
- 四川省内江市2024-2025学年高二上学期期末检测化学试题
- 送你一朵小红花评语
- 广东省深圳市龙岗区2024-2025学年二年级上学期学科素养期末综合数学试卷(含答案)
- 临床成人吞咽障碍患者口服给药护理
- (16)普通高中体育与健康课程标准日常修订版(2017年版2025年修订)
评论
0/150
提交评论