版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省曲阳县一中数学高一上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则使得成立的的取值范围是()A. B.C. D.2.已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的是A. B.C. D.3.已知函数,若,且当时,则的取值范围是A. B.C. D.4.若、是全集真子集,则下列四个命题①;②;③;④中与命题等价的有A.1个 B.2个C.3个 D.4个5.在平行四边形中,设,,,,下列式子中不正确的是()A. B.C. D.6.下列函数中既是奇函数又在定义域上是单调递增函数的是()A. B.C. D.7.设全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},则A∩(∁UB)=()A. B.C. D.8.已知函数,若,,,则实数、、的大小关系为()A. B.C. D.9.已知函数(其中为自然对数的底数,…),若实数满足,则()A. B.C. D.10.已知命题,,则为()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_________12.已知,,试用a、b表示________.13.若函数与函数的最小正周期相同,则实数______14.已知幂函数的图像过点,则的解析式为=__________15.空间直角坐标系中,点A(﹣1,0,1)到原点O的距离为_____16.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.现有三个条件:①对任意的都有;②不等式的解集为;③函数的图象过点.请你在上述三个条件中任选两个补充到下面的问题中,并求解(请将所选条件的序号填写在答题纸指定位置)已知二次函数,且满足________(填所选条件的序号).(1)求函数的解析式;(2)设,若函数在区间上的最小值为3,求实数m的值.18.已知,Ⅰ求的值;Ⅱ求的值;Ⅲ若且,求的值19.已知函数,,且.(1)求的值;(2)求的定义域;(3)求不等式的解集.20.已知函数的图像关于y轴对称(1)求k的值;(2)若此函数的图像在直线上方,求实数b的取值范围(提示:可考虑两者函数值的大小.)21.已知(1)若,求的值;(2)若,且,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】令,则,从而,即可得到,然后构造函数,利用导数判断其单调性,进而可得,解不等式可得答案【详解】令,则,,所以,所以,令,则,所以,所以,所以在单调递增,所以由,得,所以,解得,故选:C【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得,再构造函数,利用函数的单调性解不等式.2、A【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函数y=ex,y=lnx,y=2﹣x的图象如图:∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选A考点:函数的零点3、B【解析】首先确定函数的解析式,然后确定的取值范围即可.【详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.本题选择B选项.【点睛】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.4、B【解析】直接根据集合的交集、并集、补集的定义判断集合间的关系,从而求出结论【详解】解:由得Venn图,①;②;③;④;故和命题等价的有①③,故选:B【点睛】本题主要考查集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于基础题5、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.6、D【解析】结合初等函数的奇偶性和单调性可排除选项;再根据奇偶性定义和复合函数单调性的判断方法可证得正确.【详解】对A,∵是奇函数,在(一∞,0)和(0,+∞)上是单调递增函数,在定义域上不是递增函数,可知A错误;对B,不是奇函数,可知B错误;对C,不是单调递增函数,可知C错误;对D,,则为奇函数;当时,单调递增,由复合函数单调性可知在上单调递增,根据奇函数对称性,可知在上单调递增,则D正确.故选:D7、D【解析】先求∁UB,然后求A∩(∁UB)【详解】∵(∁UB)={x|x<3或x≥5},∴A∩(∁UB)={x|0<x<3}故选D【点睛】本题主要考查集合的基本运算,比较基础8、D【解析】根据条件判断函数是偶函数,且当时是增函数,结合函数单调性进行比较即可【详解】函数为偶函数,当时,为增函数,,,,则(1),即,则,故选:9、B【解析】化简得到,得到,进而得到,即可求解.【详解】由题意,函数,可得,可得,即,因为,所以.故选:B.10、A【解析】特称命题的否定为全称命题,所以,存在性量词改为全称量词,结论直接改否定即可.【详解】命题,,则:,答案选A【点睛】本题考查命题的否定,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】两边同时取以15为底的对数,然后根据对数性质化简即可.【详解】因为所以,所以,故答案为:12、【解析】根据对数式指数式互化公式,结合对数换底公式、对数的运算性质进行求解即可.【详解】因为,所以,因此有:,故答案为:13、【解析】求出两个函数的周期,利用周期相等,推出a的值【详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【点睛】本题是基础题,考查三角函数的周期的求法,考查计算能力14、##【解析】根据幂函数的定义设函数解析式,将点的坐标代入求解即可.【详解】由题意知,设幂函数的解析式为为常数),则,解得,所以.故答案为:15、【解析】由空间两点的距离公式计算可得所求值.【详解】点到原点的距离为,故答案为:.【点睛】本题考查空间两点的距离公式的运用,考查运算能力,是一道基础题.16、【解析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【点睛】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)条件①,求出代入根据恒成立可得;条件②由一元二次不等式解的性质可得;条件③代入可得;分别根据选择①②,①③,②③,均可通过联立方程组可得结果;(2)求出函数的对称轴,将对称轴和区间的端点进行比较,根据函数的单调性列出关于的方程解出即可.【详解】(1)条件①:因为,所以,即对任意的x恒成立,所以,解得.条件②:因为不等式的解集为,所以,即.条件③:函数的图象过点,所以.选择条件①②:,,,此时;选择条件①③:,则,,,此时;选择条件②③:,则,,,此时.(2)由(1)知,其对称轴为,①当,即时,,解得;②当,即时,,解得(舍);③当,即时,,无解.综上所述,所求实数m的值为.【点睛】二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.18、(Ⅰ);(Ⅱ);(Ⅲ).【解析】Ⅰ根据同角的三角函数的关系即可求出;Ⅱ根据二倍角的正弦公式、二倍角的余弦公式以及两角差的余弦公式即可求出;Ⅲ由,根据同角的三角函数的关系结合两角差的正弦公式即可求出【详解】Ⅰ,,,.Ⅱ,.Ⅲ,,,,,.【点睛】三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角19、(1);(2)或;(3)或.【解析】(1)根据的解析式,结合,即可求得;(2)根据对数的真数大于零,求解一元二次不等式,即可求得结果;(3)根据对数函数的单调性,结合函数定义域,即可求得不等式解集.【小问1详解】由题可知,又因为,即,所以.【小问2详解】由知,,若使有意义,只须,解得或,所以函数的定义域为或.【小问3详解】由对数函数的单调性可得:由,解得或,由,解得,所以或,不等式的解集为或.20、(1)(2)【解析】(1)根据函数是偶函数,结合偶函数的定义,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年七台河桃山区招聘社区工作者27人考试参考题库附答案
- 2025江苏扬州市明月湖运营管理有限公司招聘专业人员8人考试参考题库附答案
- 2025年中材西安秋季校园招聘(公共基础知识)测试题附答案
- 2025年中信银行春季校园招聘备考题库附答案
- 2025年广东东莞市麻涌镇人力资源服务有限公司招聘18名战斗员和2名驾驶员笔试备考题库附答案
- 2025年宝鸡地通汽车制品有限公司招聘(160人)考前自测高频考点模拟试题附答案
- 2025年广东阳江市招聘事业单位高层次(急需紧缺)人才32人(医疗岗11人)考试历年真题汇编附答案
- 浙江银行招聘-招商银行温州分行2026年社会招聘笔试备考题库及答案解析
- 2025秋人教版道德与法治八年级上册3.1网络改变世界教学设计
- 2025秋人教版道德与法治八年级上册7.1珍视自由课件
- 2025秋季学期国开电大专本科《经济法学》期末纸质考试名词解释题库珍藏版
- 建筑设计防火规范-实施指南
- 2025国开《中国古代文学(下)》形考任务1234答案
- 肺部感染中医护理
- 租地合同协议书合同
- 《肺炎的CT表现》课件
- 粮食仓储设施建设维修资金申请报告
- 脑器质性精神障碍护理查房
- 中考英语听力命题研究与解题策略省公开课金奖全国赛课一等奖微课获奖课件
- 物联网智能家居设备智能控制手册
- 2023-2024学年湖北省武汉市东西湖区五年级(上)期末数学试卷(含答案)
评论
0/150
提交评论