2026届湖南省长沙市开福区长沙市第一中学高一数学第一学期期末检测模拟试题含解析_第1页
2026届湖南省长沙市开福区长沙市第一中学高一数学第一学期期末检测模拟试题含解析_第2页
2026届湖南省长沙市开福区长沙市第一中学高一数学第一学期期末检测模拟试题含解析_第3页
2026届湖南省长沙市开福区长沙市第一中学高一数学第一学期期末检测模拟试题含解析_第4页
2026届湖南省长沙市开福区长沙市第一中学高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖南省长沙市开福区长沙市第一中学高一数学第一学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法正确的是A.截距相等的直线都可以用方程表示B.方程不能表示平行轴的直线C.经过点,倾斜角为直线方程为D.经过两点,的直线方程为2.下列结论中正确的是A.若角的终边过点,则B.若是第二象限角,则为第二象限或第四象限角C.若,则D.对任意,恒成立3.若函数恰有个零点,则的取值范围是()A. B.C. D.4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A. B.C. D.5.已知点,直线,则点A到直线l的距离为()A.1 B.2C. D.6.关于的一元二次不等式的解集为()A.或 B.C.或 D.7.已知函数和,则下列结论正确的是A.两个函数的图象关于点成中心对称图形B.两个函数的图象关于直线成轴对称图形C.两个函数的最小正周期相同D.两个函数在区间上都是单调增函数8.函数与则函数所有零点的和为A.0 B.2C.4 D.89.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.10.已知函数,则的大致图像为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点为角终边上一点,则______.12.函数的单调增区间是______13.已知幂函数的图象过点,则_____________14.设函数,若实数满足,且,则的取值范围是_______________________15.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.16.已知角的顶点为坐标原点,始边为x轴非负半轴,若是角终边上的一点,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,为等边三角形,平面,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.18.问题:是否存在二次函数同时满足下列条件:,的最大值为4,______?若存在,求出的解析式;若不存在,请说明理由.在①对任意都成立,②函数的图像关于轴对称,③函数的单调递减区间是这三个条件中任选一个,补充在上面问题中作答.注:如果选择多个条件分别解答,按第一个解答计分.19.已知函数f(x)=为奇函数(1)求a的值;(2)判断函数f(x)的单调性,并加以证明20.已知函数是定义在上的偶函数,当时,(1)求的解析式;(2)解不等式21.设,函数在上单调递减.(1)求;(2)若函数在区间上有且只有一个零点,求实数k的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】A错误,比如过原点的直线,横纵截距均为0,这时就不能有选项中的式子表示;B当m=0时,表示的就是和y轴平行的直线,故选项不对C不正确,当直线的倾斜角为90度时,正切值无意义,因此不能表示.故不正确D根据直线的两点式得到斜率为,再代入一个点得到方程为:故答案为D2、D【解析】对于A,当时,,故A错;对于B,取,它是第二象限角,为第三象限角,故B错;对于C,因且,故,所以,故C错;对于D,因为,所以,所以,故D对,综上,选D点睛:对于锐角,恒有成立3、D【解析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D4、A【解析】由题意,的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为,向左平移一个单位为,向下平移一个单位为,利用特殊点变为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.5、C【解析】利用点到直线的距离公式计算即可.【详解】解:点,直线,则点A到直线l的距离,故选:C.【点睛】点到直线的距离.6、A【解析】根据一元二次不等式的解法,直接求解,即可得出结果.【详解】由得,解得或.即原不等式的解集为或.故选:A.7、D【解析】由题意得选项A中,由于的图象关于点成中心对称,的图象不关于点成中心对称,故A不正确选项B中,由于函数的图象关于点成中心对称,的图象关于直线成轴对称图形,故B不正确选项C中,由于的周期为2π,的周期为π,故C不正确选项D中,两个函数在区间上都是单调递增函数,故D正确选D8、C【解析】分析:分别作与图像,根据图像以及对称轴确定零点以及零点的和.详解:分别作与图像,如图,则所有零点的和为,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等9、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误10、B【解析】计算的值即可判断得解.【详解】解:由题得,所以排除选项A,D.,所以排除选项C.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】首先求,再化简,求值.【详解】由题意可知.故答案为:5【点睛】本题考查三角函数的定义和关于的齐次分式求值,意在考查基本化简和计算.12、【解析】先求出函数定义域,再换元,利用复合函数单调性的求法求解【详解】由,得,所以函数的定义域为,令,则,因为在上递增,在上递减,而在上为增函数,所以在上递增,在上递减,故答案为:13、##【解析】设出幂函数解析式,代入已知点坐标求解【详解】设,由已知得,所以,故答案为:14、【解析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:15、【解析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解【详解】因为,,所以,所以,故答案为【点睛】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题16、【解析】根据余弦函数的定义可得答案.【详解】解:∵是角终边上的一点,∴故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(Ⅰ)取的中点,连结,由三角形中位线定理可得,,结合已知,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(Ⅱ)由线面垂直的性质可得平面,得到,再由为等边三角形,得,结合线面垂直的判定可得平面,再由面面垂直的判定可得面面【详解】(Ⅰ)证明:取的中点,连结∵在中,,∵,∴,∴四边形为平行四边形∴又∵平面∴平面(Ⅱ)证:∵面,平面,∴,又∵为等边三角形,∴,又∵,∴平面,又∵,∴面,又∵面,∴面面18、若选择①,;若选择②,;若选择③,【解析】由可得,由所选的条件可得的对称轴,再由的最大值为4,可得关于的方程,求解即可.【详解】解:由,可得:,;若选择①,对任意都成立,故的对称轴为,即,又的最大值为4,且,解得:,故;若选择②,函数图像关于轴对称,故的对称轴为,即,又的最大值为4,且,解得:,故;若选择③,函数的单调递减区间是,故的对称轴为,即,又的最大值为4,且,解得:,故.19、(1)a=-1;(2)函数f(x)在定义域R上单调递增,详见解析【解析】(1)根据定义域为R的奇函数满足f(0)=0即可求得结果;(2)由定义法知,当x1<x2时,f(x1)<f(x2),故可证得结果.【详解】(1)因为函数f(x)是奇函数,且f(x)的定义域为R,所以f(0)==0,所以a=-1,经检验满足题意.(2)f(x)==1-,函数f(x)在定义域R上单调递增理由:设任意的x1,x2,且x1<x2,则f(x1)-f(x2)=.因为x1<x2,所以,所以<0,所以f(x1)<f(x2),所以函数f(x)在定义域R上单调递增【点睛】本题考查指数型复合函数的基本性质,要求学生会根据函数的奇偶性求参数以及利用定义法证明函数的单调性,属基础题.20、(1);(2).【解析】(1)利用偶函数的定义可求得函数在上的解析式,综合可得出函数的解析式;(2)令,则所求不等式可变为,求出的取值范围,可得出关于的不等式,解之即可.【小问1详解】解:因为数是定义在R上的偶函数,当,,则当时,,.因此,对任意的,.【小问2详解】解:由(1)得,所以不等式,即,令,则,于是,解得,所以,得或,从而不等式的解集为21、(1);(2).【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论