2026届内蒙古赤峰市重点高中高二数学第一学期期末教学质量检测模拟试题含解析_第1页
2026届内蒙古赤峰市重点高中高二数学第一学期期末教学质量检测模拟试题含解析_第2页
2026届内蒙古赤峰市重点高中高二数学第一学期期末教学质量检测模拟试题含解析_第3页
2026届内蒙古赤峰市重点高中高二数学第一学期期末教学质量检测模拟试题含解析_第4页
2026届内蒙古赤峰市重点高中高二数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届内蒙古赤峰市重点高中高二数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.2.已知,,,若,,共面,则λ等于()A. B.3C. D.93.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.4.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.5.展开式中第3项的二项式系数为()A.6 B.C.24 D.6.已知a,b是互不重合直线,,是互不重合的平面,下列命题正确的是()A.若,,则B.若,,,则C.若,,则D.若,,,则7.口袋中装有大小形状相同的红球3个,白球3个,小明从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次取得白球的概率为()A.0.4 B.0.5C.0.6 D.0.758.执行如图所示的程序框图,则输出的结果为()A. B.C. D.9.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.10.若函数恰好有个不同的零点,则的取值范围是()A. B.C. D.11.已知抛物线的焦点为,抛物线上的两点,均在第一象限,且,,,则直线的斜率为()A.1 B.C. D.12.在下列命题中正确的是()A.已知是空间三个向量,则空间任意一个向量总可以唯一表示为B.若所在的直线是异面直线,则不共面C.若三个向量两两共面,则共面D.已知A,B,C三点不共线,若,则A,B,C,D四点共面二、填空题:本题共4小题,每小题5分,共20分。13.过点,且周长最小的圆的标准方程为______14.已知正方体的棱长为2,E、F分别是棱、的中点,点P为底面ABCD内(包括边界)的一动点,若直线与平面BEF无公共点,则点P的轨迹长度为______.15.已知函数有三个零点,则实数的取值范围为___________.16.已知向量,,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点18.(12分)已知圆经过点和,且圆心在直线上.(1)求圆的方程;(2)过原点的直线与圆交于M,N两点,若的面积为,求直线的方程.19.(12分)如图,在空间四边形中,分别是的中点,分别在上,且(1)求证:四点共面;(2)设与交于点,求证:三点共线.20.(12分)若函数在区间上的最大值为9,最小值为1.(1)求a,b的值;(2)若方程在上有两个不同的解,求实数k的取值范围.21.(12分)若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.22.(10分)已知数列满足,数列为等差数列,,前4项和.(1)求数列,的通项公式;(2)求和:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出、的值,可得出双曲线的渐近线方程.【详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.2、C【解析】由,,共面,设,列方程组能求出λ的值【详解】∵,,共面,∴设(实数m、n),即,∴,解得故选:C3、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C4、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B5、A【解析】根据二项展开式的通项公式,即可求解.【详解】由题意,二项式展开式中第3项,所以展开式中第3项的二项式系数为.故选:A.6、B【解析】根据线线,线面,面面位置关系的判定方法即可逐项判断.【详解】A:若,,则或a,故A错误;B:若,,则a⊥β,又,则a⊥b,故B正确;C:若,,则或α与β相交,故C错误;D:若,,,则不能判断α与β是否垂直,故D错误.故选:B.7、C【解析】求出第一次取得红球的事件、第一次取红球第二次取白球的事件概率,再利用条件概率公式计算作答.【详解】记“第一次取得红球”为事件A,“第二次取得白球”为事件B,则,,于是得,所以在第一次取得红球的条件下,第二次取得白球的概率为0.6.故选:C8、B【解析】写出每次循环的结果,即可得到答案.【详解】当时,,,,;,此时,退出循环,输出的的为.故选:B【点睛】本题考查程序框图的应用,此类题要注意何时循环结束,建议数据不大时采用写出来的办法,是一道容易题.9、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.10、D【解析】分析可知,直线与函数的图象有个交点,利用导数分析函数的单调性与极值,数形结合可求得实数的取值范围.【详解】令,可得,构造函数,其中,由题意可知,直线与函数的图象有个交点,,由,可得或,列表如下:增极大值减极小值增所以,,,作出直线与函数的图象如下图所示:由图可知,当时,即当时,直线与函数的图象有个交点,即函数有个零点.故选:D.11、C【解析】作垂直准线于,垂直准线于,作于,结合抛物线定义得出斜率为可求.【详解】如图:作垂直准线于,垂直准线于,作于,因为,,,由抛物线的定义可知:,,,所以,直线斜率为:.故选:C.12、D【解析】对于A,利用空间向量基本定理判断,对于B,利用向量的定义判断,对于C,举例判断,对于D,共面向量定理判断【详解】对于A,若三个向量共面,在平面,则空间中不在平面的向量不能用表示,所以A错误,对于B,因为向量是自由向量,是可以自由平移,所以当所在的直线是异面直线时,有可能共面,所以B错误,对于C,当三个向量两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C错误,对于D,因为A,B,C三点不共线,,且,所以A,B,C,D四点共面,所以D正确,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】方法一:根据当线段为圆的直径时,圆周长最小,由线段的中点为圆心,其长一半为半径求解;方法二:根据当线段为圆的直径时,圆周长最小,根据以AB为直径的圆的方程求解.【详解】方法一:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小,即圆心为线段的中点,半径则所求圆的标准方程为方法二:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小又,,故所求圆的方程为,整理得,所以所求圆的标准方程为14、【解析】取BC中点G,证明平面平面确定点P的轨迹,再计算作答.【详解】在正方体中,取BC中点G,连接,如图,因E、F分别是棱、的中点,则,而平面,平面,则有平面,因,则,而,则有四边形为平行四边形,有,又平面,平面,于是得平面,而,平面,因此,平面平面,即线段AG是点P在底面ABCD内的轨迹,,所以点P的轨迹长度为.故答案为:15、【解析】由题意可得与的图象有三个不同的交点,经判断时不符合题意,当时,时,两个函数图象有一个交点,可得时与的图象有两个交点,等价于与的图象有两个不同的交点,对求导,数形结合即可求解.【详解】令可得,若函数函数有三个零点,则可得方程有三个根,即与的图象有三个不同的交点,作出的图象如图:当时,是以为顶点开口向下的抛物线,此时与的图象没有交点,不符合题意;当时,与的图象只有一个交点,不符合题意;当时,时,与的图象有一个交点,所以时与的图象有两个交点,即方程有两个不等的实根,即方程有两个不等的实根,可得与的图象有两个不同的交点,令,则,由即可得,由即可得,所以在单调递增,在单调递减,作出其图象如图:当时,,当时,可得与的图象有两个不同的交点,即时,函数有三个零点,所以实数的取值范围为,故答案为:【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.16、2【解析】由空间向量数量积的坐标运算可得答案.【详解】因为,,,所以,.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)解方程和即得解;(2)设,,将与圆P方程联立得到韦达定理,再写出直线的方程即得解.【小问1详解】解:因为为抛物线C上一点,且,所以到抛物线C的准线的距离为2则,,则,所以,故抛物线C的方程为【小问2详解】证明:由(1)知,则圆P的方程为设,,将与圆P的方程联立,可得,则,当时,,不妨令,则,此时;当时,直线DE的斜率为,则直线DE的方程为,即,即,令且,得,直线过点;综上,直线DE过定点18、(1)(2)直线的方程为或或【解析】(1)由弦的中垂线与直线的交点为圆心即可求解;(2)由,可得或,进而有或,显然直线斜率存在,设直线,由点到直线的距离公式求出的值即可得答案.【小问1详解】解:设弦的中点为,则有,因为,所以直线,所以直线的中垂线为,则圆心在直线上,且在直线上,联立方程解得圆心,则圆的半径为,所以圆方程为;【小问2详解】解:设圆心到直线的距离为,因为,所以或,所以或,显然直线斜率存在,所以设直线,则或,解得或或,故直线的方程为或或.19、(1)证明见解析;(2)证明见解析.【解析】(1)根据题意,利用中位线定理和线段成比例,先证明,进而证明问题;(2)先证明平面,平面,进而证明点P在两个平面的交线上,然后证得结论.【小问1详解】连接分别是的中点,.在中,.所以四点共面.【小问2详解】,所以,又平面平面,同理:,平面平面,为平面与平面的一个公共点.又平面平面,即三点共线.20、(1)(2)【解析】(1)令,则,根据二次函数的性质即可求出;(2)令,方程化为,求出的变化情况即可求出.【小问1详解】令,则,则题目等价于在的最大值为9,最小值为1,对称轴,开口向上,则,解得;【小问2详解】令,则,于是方程可变为,即,因为函数在单调递减,在单调递增,且,要使方程有两个不同的解,则与有两个不同的交点,所以.21、(1)(2)【解析】(1)设公比为,则由已知可得,求出公比,再求出首项,从而可求出数列的通项公式;(2)由已知可得,而,所以,然后利用错位相减法可求得结果【小问1详解】设各项为正的等比数列的公比为,,,则,,,即,解得或(舍去),所以,所以数列的通项公式为.【小问2详解】因为是以1为首项,1为公差的等差数列,所以.由(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论