版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page11页,共=sectionpages11页2025-2026学年北京市海淀区九年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。在每小题给出的选项中,只有一项是符合题目要求的。1.选择不同的旋转中心和旋转角转动同一个图案,可以产生不同的效果,下列四个图案均由同一个图案“”利用旋转设计得到,其中是中心对称图形的是()A. B. C. D.2.不透明的盒子中有5个形状、大小、质地等完全相同的小球,上面分别写着数学1,2,3、4、5.随机从盒子中摸出一个小球,摸出的小球上面的数字是奇数的概率是()A. B. C. D.3.如图,四边形ABCD内接于⊙O,若∠C=110°,则∠A的大小为()A.90°
B.80°
C.70°
D.60°4.在平面直角坐标系xOy中,将抛物线y=2x2向右平移1个单位长度,得到的抛物线的表达式是()A.y=2(x+1)2 B.y=2(x-1)2 C.y=2x2+1 D.y=2x2-15.用20m长的绳子围成一个面积为16m2的矩形,设矩形的一边长为xm,根据题意可列方程为()A.x(10-x)=16 B.x(10-x)=8 C.x(20-x)=16 D.x(20-x)=326.如图,在平面直角坐标系xOy中,▱ABCD的对角线交于点O,过点O的直线分别与边AB,CD交于点E,F,若点E的坐标为(a,b),则点F的坐标为()A.(a,b)
B.(-a,b)
C.(a,-b)
D.(-a,-b)7.已知⊙O的半径为5,△ABC内接于⊙O,∠C=30°,则AB的长为()A. B.5 C. D.108.在平面直角坐标系xOy中,已知⊙M的圆心在直线上,给出下列三个结论:
①同时与x轴和y轴相切的⊙M有2个;
②若⊙M经过原点O,则⊙M的面积的最小值为4π;
③若⊙M经过点(0,2),则点(1,0)一定在⊙M外.
其中正确结论的个数是()A.0 B.1 C.2 D.3二、填空题:本题共8小题,每小题2分,共16分。9.二次函数y=(x-2)2+1的最小值为
.10.若关于x的一元二次方程ax2-4x+1=0(a≠0)有两个相等的实数根,则实数a的值为
.11.如图,点C,D在以AB为直径的⊙O上,若∠D=50°,则∠CAB的大小为
°.
12.小明遇到下面的问题:在一个平面上画一组间距为4cm的平行线,将一根长度为3cm的针随机投掷在这个平面上,试估计针与直线相交的概率,小明结合信息课中人工智能的相关知识,利用某智能体模型做了模拟试验,试验结果如表:试验次数n50100200300500100020004000相交频数m2645931442424819551916相交频率0.5200.4500.4650.4800.4840.4810.4780.479根据表中的数据,估计针与直线相交的概率为
(精确到0.01).13.如图,过⊙O外一点P作⊙O的两条切线PA,PB,若⊙O的半径为25,∠APB=90°,则PO的长为
.
14.如图,某公共场所为游客提供的一次性饮水纸杯可视为圆锥,如果该圆锥底面半径为3cm,母线长为9cm,则该圆锥侧面展开图的圆心角的大小为
°.
15.在平面直角坐标系xOy中,点A(-1,1),B(2,1),若抛物线y=ax2(a≠0)与线段AB有公共点,则a的取值范围是
.16.某农业科技公司培育了15个农作物新品种,按其评估价值由低到高标注为1号至15号,并交由三个苗圃基地试种这些农作物新品种,每个苗圃基地种植5个,将每个苗圃基地种植的农作物新品种的最大标号与最小标号之和称为“综合培育价值指数”.
(1)若其中一个苗圃基地种植农作物新品种的“综合培育价值指数”为7,则该苗圃基地可选择的不同种植方案有______种;
(2)这三个苗圃基地种植的农作物新品种的“综合培育价值指数”之和的最大值是______.三、计算题:本大题共1小题,共5分。17.解方程:x2+4x-1=0.四、解答题:本题共11小题,共63分。解答应写出文字说明,证明过程或演算步骤。18.(本小题5分)
已知x=1是关于x的一元二次方程x2+2cx-c2=0的一个根,求代数式(c+3)(c-3)+c(c-4)的值.19.(本小题5分)
数学课上,李老师提出了如下问题:
已知:如图,是⊙O上的一条劣弧.
求作:的中点.
同学们通过交流讨论得到了很多不同的方法,其中小亮给出了一个作法:
①作射线AO交⊙O于点C;
②以C为圆心,线段CA的长为半径作圆弧交射线CB于点D;
③连接AD交⊙O于点E.
则点E为所求.
(1)根据小亮设计的尺规作图过程,补全图形(保留作图痕迹);
(2)补全下面的证明.
证明:连接CE,OE,OB.
∵AC为⊙O的直径,
∴①______=90°,
∴CE⊥AD,
∵AC=②______,
∴∠ACE=∠BCE,
又∵∠ACE,∠AOE所对的弧为,
∴∠ACE=∠AOE(③______)(填推理的依据),
同理,
∴∠AOE=∠BOE,
∴=,
∴点E为的中点.20.(本小题5分)
如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(1,2),B(3,1),C(5,4).
(1)画出△ABC绕点A逆时针旋转90°所得的△AB1C1,并直接写出B1C1的长;
(2)直接写出在(1)的旋转过程中线段AB扫过区域的面积.21.(本小题5分)
在劳动课上,同学们设计制作了一种圆柱形零件,为检测它的底面直径是否符合标准,需要用到一种测量槽,槽的左右两壁均与槽的底面垂直且等高,槽的宽度为4cm,深度为1cm.把圆柱形零件水平放入槽内时,截面如图1所示,若零件同时与A、B、C三点接触,则其底面直径符合标准,如图2,圆柱的截面⊙O经过点A、B,且与MN相切于点C,求该圆柱形零件的底面直径.
22.(本小题5分)
在平面直角坐标系xOy中,已知抛物线y=x2+mx+n经过点(-1,-1)和(0,-1).
(1)求抛物线的表达式;
(2)当-1<x<1时,关于x的方程x2+mx+n-t=0有实数根,直接写出t的取值范围.23.(本小题6分)
某学校为丰富学生的体育活动,安装了智慧体育器材.该校九年级共有480名学生,学校统计了九年级学生使用智慧体育器材的情况,数据整理如下:高频使用者(每周不少于4次)中频使用者(每周2至3次)低频使用者(每周不多于1次)人数160mn(1)若从九年级随机抽取一名学生,该生是“中频使用者”的概率为,则m=______,n=______;
(2)九年级的甲,乙同学都是“高频使用者”,丙同学是“中频使用者”,丁同学是“低频使用者”,现从这4名学生中随机抽取2人,请用列表或画树状图的方法,求抽到的2人中至少有1人是“高频使用者”的概率.24.(本小题6分)
如图,AB是⊙O的直径,点C在⊙O上,P为BA延长线上一点,∠ACP=∠ABC.
(1)求证:PC是⊙O的切线;
(2)过点C作CH⊥AB于H,延长CH交⊙O于点D,若=,PC=3,求△PBC的面积.25.(本小题6分)
随着电动汽车充电网络日趋完善,便捷的出行方式让越来越多的人青睐电动汽车,电动汽车快充的充电量不会随着充电时间的增加而匀速增加,而是分为四个阶段:第一阶段,充电功率从一个较低的值迅速升至车辆允许的峰值功率;第二阶段,BMS(电池管理系统)允许充电桩以车辆能接受的最大功率进行充电;第三阶段,为保护电池免受损害,BMS会指令充电桩逐步降低充电功率;第四阶段,为了最大限度保持电池寿命,充电功率会断崖式下跌,并持续降低.
下面是某电动汽车车主张先生在车辆使用过程中记录的信息.
信息1:电动汽车快充时,累计充电时间t(min)与汽车仪表盘显示的电量e(%)的关系.汽车仪表盘显示的电量e(%)020305060708090100累计充电时间t(min)058172229385094信息2:电动汽车行驶过程中汽车仪表盘显示的可行驶里程s(km)与电量e(%)的关系.
(1)通过分析信息1中的数据,发现可以用函数刻画t与e的关系,在给出的平面直角坐标系中,画出这个函数的图象;
根据以上信息中的数据和函数图象,解决下列问题(注:行驶中不考虑其他影响耗电的因素):
(2)张先生的电动汽车每消耗10%的电量可行驶______km;
(3)张先生驾驶电动汽车前往某地,途经A,B两个服务区,其中A服务区到目的地的路程为540km,B服务区到目的地的路程为120km,这两个服务区都有电动汽车快充充电桩,到达A服务区时汽车仪表盘显示的电量为30%.
①若张先生计划在A服务区一次性充电若干时间,在其他地方不再充电,且他到达目的地时汽车仪表盘显示的电量恰好为10%,则张先生在A服务区的充电时间为______min;
②若张先生计划在A、B两个服务区都充电,在其他地方不再充电,到达B服务区和目的地时汽车仪表盘显示的电量均不低于20%,则张先生在A,B两个服务区的充电时间之和最少为______min(精确到个位).
26.(本小题6分)
在平面直角坐标系xOy中,M(3-2a,m),N(a+2,n)是抛物线y=ax2-2ax(a≠0)两点.
(1)当a=-1时,比较m,n的大小,并说明理由;
(2)当m<n时,记抛物线在点M,N之间的部分(含点M,N)为图形G,若在图形G上存在两点A、B(点A在点B左侧),点P(p,q)沿图形G从点A运动到点B的过程中,q随p的增大到增大,求a的取值范围.27.(本小题7分)
在△ABC中,AB=AC,∠B=α(0°<α<45°),D,E分别是BC,AC的中点,M是线段BD上的动点(不与B,D重合),连接DE,EM,将线段EM绕点E顺时针旋转2α得到线段EN,连接AN.
(1)如图1,求证:AN=DM;
(2)如图2,连接MN交AB于点F,当MF=NF时,用等式表示线段FB与FA的数量关系,并证明.28.(本小题7分)
在平面直角坐标xOy中,对于点P和△ABC,给出如下定义:若存在⊙P与△ABC的各边都有两个公共点,且每条边上两个公共点之间的距离均为a,则称点P是△ABC的“a相关点”.
(1)如图,△ABC是以O为中心,边长为3的等边三角形,点A在y轴上,在点O(0,0),M(0,1),N(1,1)中,点______是△ABC的“a相关点”,其中a的值可以为______(写出一个符合题意的值即可);
(2)已知点A(6,0),B(0,),若点P是△AOB的“a相关点”,则⊙P的半径r的取值范围是______;
(3)已知△ABC中,点A(-3,t),B(3,t),t>0,∠ACB=60°,边长为8的菱形EFGH的对角线交点为O,点E在y轴正半轴上,∠EFG=60°.P是菱形EFGH上一点,且存在△ABC使得点P是△ABC的“a相关点”,a≥6-2,直接写出t的取值范围.
1.【答案】C
2.【答案】C
3.【答案】C
4.【答案】B
5.【答案】A
6.【答案】D
7.【答案】B
8.【答案】C
9.【答案】1
10.【答案】±4
11.【答案】40
12.【答案】0.48
13.【答案】
14.【答案】120
15.【答案】
16.【答案】4;
57
17.【答案】解:∵x2+4x-1=0,
∴x2+4x=1,
∴x2+4x+4=1+4,
∴(x+2)2=5,
∴x+2=,
∴x=-2±,
∴x1=-2+,x2=-2-.
18.【答案】-7.
19.【答案】
∠CEA;CD;同弧所对的圆周角等于圆心角的一半
20.【答案】如图,△AB1C1即为所求,线段B1C1的长==;
线段AB扫过区域的面积==
21.【答案】5cm.
22.【答案】y=x2+x-1
-≤t<1
23.【答案】240;80
24.【答案】连接OC,则OC=OA,
∴∠OCA=∠BAC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠ACP=∠ABC,
∴∠OCP=∠OCA+∠ACP=∠BAC+∠ABC=90°,
∵OC是⊙O的半径,且PC⊥OC,
∴PC是⊙O的切线
△PBC的面积为
25.【答案】
60
86;49
26.【答案】证明:m<n,理由如下:
∵a=-1,
∴y=-x2+2x,M(5,m),N(1,n),
∴m=-15,n=1,
∴m<n
a<-1或
27.【答案】∵D,E分别是BC,AC的中点,
∴AE=EC=AC,.
∵AB=AC,∠B=α,
∴,∠C=∠B=α,
∴∠EDC=∠C=α,
∴∠DEA=∠EDC+∠C=2α.
∵线段EM绕点E顺时针旋转2α得到线段EN,
∴∠MEN=2α,ME=NE.
∴∠DEM=∠DEA-∠MEA=2α-∠MEA,∠AEN=∠MEN-∠MAE=2α-∠MEA.
∴∠DEM=∠AEN.
在△MDE和△NAE中,
∴△MDE≌△NAE(SAS).
∴MD=AN
FB=3FA,理由如下:
如图,过点M作MG∥AN交AB于点G,连接GD,
则∠MGF=∠NAF.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行制度规范
- 上墙制度张贴规范
- 仪等级制度管理规范
- 病案规范化管理制度
- 诊所点滴配药制度规范
- 医院网络员制度规范
- 防止学术腐败制度规范
- 清渣管理制度规范
- 物资供应站制度规范
- 光伏踏勘制度规范
- 比亚迪索赔培训课件
- 2026届四川省泸州高级中学高一生物第一学期期末经典试题含解析
- 路基换填施工方案标准
- 【期末必刷选择题100题】(新教材)统编版八年级道德与法治上学期专项练习选择题100题(含答案与解析)
- 关于怎样展开督导的工作方案
- 中国数联物流2026届校园招聘50人考试题库及答案1套
- 2025年大学网络工程(网络安全技术)试题及答案
- 建筑公司工资薪酬管理制度(3篇)
- 中国餐饮巨头百胜集团深度分析
- 2024-2025学年福建省厦门市双十中七年级(上)期末英语试卷
- 胸锁乳突肌区课件
评论
0/150
提交评论