湖北襄阳市第四中学2025-2026学年高一上学期质量检测四数学试题含解析_第1页
湖北襄阳市第四中学2025-2026学年高一上学期质量检测四数学试题含解析_第2页
湖北襄阳市第四中学2025-2026学年高一上学期质量检测四数学试题含解析_第3页
湖北襄阳市第四中学2025-2026学年高一上学期质量检测四数学试题含解析_第4页
湖北襄阳市第四中学2025-2026学年高一上学期质量检测四数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

襄阳四中2025级高一上学期质量检测四数学试题一、单选题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知函数则()A. B.e C. D.2【答案】D【解析】【分析】根据分段函数由里到外逐步求解即可.【详解】由题可得,故.故选:D.2.已知命题:,,则为()A., B.,C., D.,【答案】A【解析】【分析】利用全称命题的否定可得出结论.【详解】命题为全称命题,则命题的否定为,,故选:A.3.已知幂函数在上单调递减,设,则大小关系为()A. B.C. D.【答案】C【解析】【分析】根据幂函数的单调性以及定义,可得其函数解析式,利用对数函数和指数函数的单调性,比较大小,结合幂函数的奇偶性和单调性,可得答案.【详解】由题意,可得,解得,则,显然该函数为偶函数,由函数在其定义域上单调递增,则,由函数在其定义域上单调递增,则,故,即,由函数在上单调递减,则.故选:C.4.下列结论正确的是()A.若角,则角是第一象限角B.若角,则角与角的终边相同C.若角为锐角,则角为钝角D.若角的终边上有一点,则【答案】B【解析】【分析】根据角度直接判断A;根据判断B,根据,判断C,根据三角函数终边点的定义判断D.【详解】对于A,角是第四象限角,故错误;对于B,由于,故角与角的终边相同,正确;对于C,角为锐角,则,,故为钝角不一定成立,错误;对于D,由题,故,错误.故选:B5.已知函数()的图象过函数图象的定点,则的最小值为()A.4 B.6 C.8 D.9【答案】D【解析】【分析】先求得图象的定点,得到,再由,结合基本不等式,即可求解.【详解】由函数,令,可得,所以图象的定点,又由函数的图象过函数图象的定点,可得,即,且,则,当且仅当时,即时,等号成立,所以的最小值为.故选:D.6.已知函数,曲线和恰有一个交点,则()A.1 B.-1 C. D.0【答案】C【解析】【分析】将转化为,构造函数,利用偶函数的对称性即可确定方程只有一个根时的值.【详解】由可得,整理得,设,则函数的定义域为,所以,则在上为偶函数,若方程只有一个根,根据偶函数的对称性可得.故选:C.7.已知函数,若仅存在一个整数,使得方程有4个不同的实根,则实数的取值范围是()A. B. C. D.【答案】A【解析】【分析】先利用二次函数性质并结合题意得到每一部分根的个数,再转化为交点问题求解参数范围即可.【详解】若方程有4个不同的实根,如图,作出符合题意的图像,当时,,则由二次函数性质得此时最多有两个不同的实根,而当时,,此时一定有两个不同的实根,即与有两个不同的交点,得到,当时,结合题意得有两个不同的实根,此时与有两个不同交点,且此时,,可得,即,因为仅存在一个整数,所以,解得,而,得到,故A正确.故选:A8.已知实数是函数的两个零点,则下列结论正确的是()A. B.C. D.【答案】B【解析】【分析】在同一平面直角坐标系中作出函数与的图像,结合图像进行讨论得到的范围.【详解】令,则,在同一平面直角坐标系中作出函数与的图像,如图所示.不妨设,则由图像可得,所以,故D错误.,,故C错误.,,即,又,,故A错误,B正确故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.命题“,”的否定是“,”B.若是第二象限角,则在第二象限C.已知扇形的面积为4,周长为10,则扇形的圆心角(正角)的弧度数为D.若角的终边过点,则【答案】AC【解析】【分析】应用全称命题的否定判断A,应用诱导公式判断B,应用扇形的弧长及面积公式判断C,应用任意角的正弦定义计算判断D.【详解】A:命题“,”的否定是“,”故A正确;B:因为,又因为是第二象限角,,所以,则在第三象限,故错误;C:已知扇形的面积为4,周长为10,则,可得或,而,(舍)或,故C正确;D:角的终边过点,当时,,故D错误;故选:AC.10.设函数的定义域为,且满足为奇函数,为偶函数,当时,,则()A. B.在上单调递减C.奇函数 D.方程仅有10个不同实数解【答案】ACD【解析】【分析】由为奇函数和为偶函数得,即是周期为8的周期函数即可判断AC,作出函数在和的函数图象,利用数形结合即可判断BD.【详解】由为奇函数,可得,即(*),又为偶函数,则,即,由(*),,即,则,故,所以是以8为一个周期的周期函数,对于A,,故A正确;对于C,,又为奇函数,所以为奇函数,故C正确;对于B,因方程的根的个数,即与的交点个数,作出函数在和的函数图象:由图可知在上单调递增,故B错误;由图可知,与有10个交点,即方程仅有10个不同实数解,故D正确.故选:ACD.11.已知,下列说法正确的是()A.的解集为B.存在实数,使函数有三个零点C.对任意,存在实数,使方程恒有两解且为定值D.若,则【答案】ACD【解析】【分析】解不等式可判断A;根据解析式判断出单调性,结合的图象可判断B;方程整理得,求出,对任意,令,可判断C;求出、、,判断出是以3为周期的周期函数,利用周期性可判断D.【详解】对于A,由得,解得,可得的解集为,故A正确;对于B,,,当时,单调递增,且时,,时,,当时,单调递增,且时,,时,,令,得令,当时,单调递减,,当时,单调递增,,当时,单调递减,,其图象如下,所以不存在实数,使函数有三个零点,故B错误;对于C,方程整理得,若有两解,需判别式,且,对任意,令,则,此时方程为,即方程,有两解,,所以存在实数,使方程恒有两解且为定值0,故C正确;对于D,,,,所以是以3为周期的周期函数,且,,,,则,故D正确.故选:ACD.三、填空题:本大题共3小题,每小题5分,共计15分.12.计算:_____.【答案】3【解析】【分析】利用指数、对数的运算性质及换底公式化简计算即可.【详解】原式故答案为:3.13.设方程的根为,方程的根为,则的值为_________.【答案】7【解析】【分析】设函数与的交点为,函数与的交点为,由反函数的性质得到,再由方程根的定义得到,,再将其代入所求式计算即得.【详解】由方程的根为,设函数与的交点为;由方程的根为,设函数与的交点为;又因函数与函数互为反函数,所以两者图象关于对称,而且直线与直线互相垂直,则点与关于对称,则得到;由题意得到,则,;所以.故答案为:714.已知函数,若关于x的方程有2个不同的实根,则实数a的取值范围为________;若关于x的方程有4个不同的实根,则实数a的取值范围为________.【答案】①.②.【解析】【分析】根据分段函数解析式,画出函数图象,判断方程有2个不同实数根时参数的范围;再根据一元二次方程的解法,方程的根与函数图象交点之间的关系,以及分段函数的性质,求出参数范围.【详解】如图所示,方程有2个不同的实数根时,,即实数a的取值范围为;由,因式分解得,解得或.由函数图象可知有2个不同的实数根,则也有2个不同的实根,则,解得或,即实数a的取值范围为.故答案为:,.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)求值:;(2)已知角终边上的一点,求的值.【答案】(1);(2)【解析】【分析】(1)先利用诱导公式化简成特殊角的三角函数,然后根据特殊角的三角函数值进行计算;(2)根据点在角终边上,计算出,再利用诱导公式化简,即可解出.【详解】(1)原式;(2)因为点在角终边上,所以,化简:.16.已知函数(1)求函数在区间上的最大值;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1)33;(2).【解析】【分析】(1)根据给定条件,利用换元法,结合指数函数单调性、二次函数性质求出最大值.(2)利用指数函数、二次函数单调性确定函数在上的单调性,由此脱去法则“f”并分离参数,利用二次函数性质求出最大值即得.【小问1详解】函数,令,则,当时,则,函数在上单调递减,在上单调递增,而,所以函数在上的最大值为33.【小问2详解】由(1)知,函数,函数在上单调递增,函数在上单调递增,因此函数在上单调递增,由,得,则由,得,依题意,对恒成立,则在上恒成立,,当时,,则当,即时,取得最大值1,因此,解得,所以实数的取值范围为.17.为积极响应上级号召,坚定“四个自信”中的文化自信,某市电视台于2021年年初开通了“优秀传统文化”视频号,并组织专业团队运营,由于内容丰富多彩,该视频号受到广大群众的喜爱,关注度也逐年增加,以2021年作为第1年,运营团队在每年年底利用数据监测系统对该视频号本年度的观看人次统计如下表:第年1234观看人次(十万)35405867为了描述年数与第年该视频号观看人次(单位:十万)的关系,现有以下三种模型供选择:①;②;③.(1)由于视频号初创,监测系统对2021年的数据统计不准确,导致该组数据不宜使用,请从①②③中选出一个合适的模型,并求相应的函数解析式,并根据这个模型预测2028年的观看人次能否超过80(单位:十万);(2)为更好的运营视频号,吸引更多的观看者,2025年年初,运营团队加大投入,引进了最新数据监测系统,经该系统分析,2021年的观看人次修正为28(单位:十万),2024年的观看人次修正为85(单位:十万)(i)根据修正后的数据,请从①②③中选择合适的模型,并求相应的函数解析式;(ii)按上级规定,“优秀传统文化”类视频号当年观看人次超过200(单位:十万),其运营团队可被评为“优秀文化传播集体”荣誉称号,根据(i)中所求函数模型,试估计该视频号运营团队最快到哪一年就能被评为“优秀文化传播集体”?(参考数据:,,.)【答案】(1)选择模型①,,2028年(2)(i)选择模型②,;(ii)2027年【解析】【分析】(1)选择模型①,将点的坐标代入解析式,求出解析式,将代入求值即可下结论;(2)(i)选择模型②,利用待定系数法求出解析式即可;(ii)由题意建立不等式,结合对数的运算性质计算即可下结论.【小问1详解】由题意,选择模型①,将,分别代入①式可得:,解得,,所以,也满足该式.当时,,即按该模型预测,该视频号2028年的观看人次达到80.5(单位:十万人),所以2028年该视频号观看人次能超过80(单位:十万人).【小问2详解】(i)由题意,选择模型②,将,分别代入②式可得:,解得,,所以,,均满足该式.(ii)该视频号观看人次超过200(单位:十万人),即不等式,所以,不等式两边同时取常用对数得,,所以,即按(i)中求得的函数模型变化,估计最快到2027年,该视频号运营团队能被评为“优秀文化传播集体”.18.已知.(1)证明:;(2)若函数,当定义域为时,值域为,求实数的取值范围.【答案】(1)证明见解析(2)【解析】【分析】(1)通过变形得,利用函数的单调性即可;(2)首先求出,则得到方程组,转化成是上两个大于4的根,即上有两个大于4的根,列出不等式组,解出即可.【小问1详解】设,设,易得在上为增函数,则为增函数,而,即.【小问2详解】由题意知:,,,解得或设,,因为反比例函数在和上单调递增,通过向左平移4个单位,再向上平移1个单位即可得到,则函数在和上单调递增,根据复合函数单调性知在和的范围内各自单调递减,而,且,故,因为定义域为,故,根据在上单调递减,,是方程上两个大于4的根,上有两个大于4的根,则有,.19.对于定义域为的函数,如果同时满足以下三个条件:①任意的,总有;②;③若,,,总有成立,则称函数为理想函数.(1)证明:若函数为理想函数,则;(2)证明:函数,是理想函数;(3)证明:若函数为理想函数,假定存在,使得且,则.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)令分别代入题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论