版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届银川市第三中学数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与曲线有公共点,则b的取值范围是()A. B.C. D.2.某综合实践小组设计了一个“双曲线型花瓶”.他们的设计思路是将某双曲线的一部分(图1中A,C之间的曲线)绕其虚轴所在直线l旋转一周,得到花瓶的侧面,花瓶底部是平整的圆面,如图2.该小组给出了图1中的相关数据:,,,,,其中B是双曲线的一个顶点.小组中甲、乙、丙、丁四位同学分别用不同的方法估算了该花瓶的容积(忽略瓶壁和底部的厚度),结果如下表所示学生甲乙丙丁估算结果()其中估算结果最接近花瓶的容积的同学是()(参考公式:,,)A.甲 B.乙C.丙 D.丁3.已知是双曲线的左焦点,,是双曲线右支上的动点,则的最小值为()A.9 B.8C.7 D.64.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.5.如图是等轴双曲线形拱桥,现拱顶距离水面6米,水面宽米,若水面下降6米,则水面宽()A.米 B.米C.米 D.米6.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和7.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.28.考试停课复习期间,小王同学计划将一天中的7节课全部用来复习4门不同的考试科目,每门科目复习1或2节课,则不同的复习安排方法有()种A.360 B.630C.2520 D.151209.已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5 B.10C.20 D.4010.已知空间四个点,,,,则直线AD与平面ABC所成的角为()A. B.C. D.11.设双曲线的实轴长与焦距分别为2,4,则双曲线C的渐近线方程为()A. B.C. D.12.过椭圆+=1左焦点F1引直线交椭圆于A、B两点,F2是椭圆的右焦点,则△ABF2的周长是()A.20 B.18C.10 D.16二、填空题:本题共4小题,每小题5分,共20分。13.数学中,多数方程不存在求根公式.因此求精确根非常困难,甚至不可能.从而寻找方程的近似根就显得特别重要.例如牛顿迭代法就是求方程近似根的重要方法之一,其原理如下:假设是方程的根,选取作为的初始近似值,在点处作曲线的切线,则与轴交点的横坐标称为的一次近似值,在点处作曲线的切线.则与轴交点的横坐标称为的二次近似值.重复上述过程,用逐步逼近.若给定方程,取,则__________.14.已知数列前n项和为,且.(1)证明:是等比数列,并求的通项公式;(2)在①;②;③这三个条件中任选一个补充在下面横线上,并加以解答.已知数列满足___________,求的前n项和.注:如果选择多个方案分别解答,按第一个方案解答计分.15.若“x2-2x-8>0”是“x<m”的必要不充分条件,则m最大值为________16.已知等差数列是首项为的递增数列,若,,则满足条件的数列的一个通项公式为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设为数列的前n项和,且满足(1)求证:数列为等差数列;(2)若,且成等比数列,求数列的前项和18.(12分)已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标19.(12分)已知抛物线:,直线过定点.(1)若与仅有一个公共点,求直线的方程;(2)若与交于A,B两点,直线OA,OB(其中О为坐标原点)的斜率分别为,,试探究在,,,中,运算结果是否有为定值的?并说明理由.20.(12分)在平面直角坐标系中,点,直线轴,垂足为H,,圆N过点O,与l的公共点的轨迹为(1)求的方程;(2)过M的直线与交于A,B两点,若,求21.(12分)已知数列的前项和为,已知,且当,时,(1)证明数列是等比数列;(2)设,求数列的前项和22.(10分)如图,已知椭圆:()的左、右焦点分别为、,离心率为.过的直线与椭圆的一个交点为,过垂直于的直线与椭圆的一个交点为,.(1)求椭圆的方程和点的轨迹的方程;(2)若曲线上的动点到直线:的最大距离为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:当直线经过时最大,即,当直线与下半圆相切时最小,由圆心到直线距离等于半径2,可得:解得(舍去),或结合图象可得故选:D.2、D【解析】根据几何体可分割为圆柱和曲边圆锥,利用圆柱和圆锥的体积公式对几何体的体积进行估计即可.【详解】可将几何体看作一个以为半径,高为的圆柱,再加上两个曲边圆锥,其中底面半径分别为,,高分别为,,,,所以花瓶的容积,故最接近的是丁同学的估算,故选:D3、A【解析】由双曲线方程求出,再根据点在双曲线的两支之间,结合可求得答案【详解】由,得,则,所以左焦点为,右焦点,则由双曲线的定义得,因为点在双曲线的两支之间,所以,所以,当且仅当三点共线时取等号,所以的最小值为9,故选:A4、A【解析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【点睛】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.5、B【解析】以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,求出双曲线方程,数形结合即可求解.【详解】如图所示,以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,设双曲线标准方程为:(a>0),则顶点,,将A点代入双曲线方程得,,当水面下降6米后,,代入双曲线方程得,,∴水面宽:米.故选:B.6、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C7、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.8、C【解析】,先安排复习节的科目,然后安排其余科目,由此计算出不同的复习安排方法数.【详解】第步,门科目选门,安排节课,方法数有种,第步,安排其余科目,每门科目节课,方法数有种,所以不同的复习安排方法有种.故选:C9、B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题10、A【解析】根据向量法求出线面角即可.【详解】设平面的法向量为,直线AD与平面ABC所成的角为令,则则故选:A【点睛】本题主要考查了利用向量法求线面角,属于中档题.11、C【解析】由已知可求出,即可得出渐近线方程.【详解】因为,所以,所以的渐近线方程为.故选:C.12、A【解析】根据椭圆的定义求得正确选项.【详解】依题意,根据椭圆的定义可知,三角形的周长为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据牛顿迭代法的知识求得.【详解】构造函数,,切线的方程为,与轴交点的横坐标为.,所以切线的方程为,与轴交点的横坐标为.故答案为:14、(1)证明见解析,;(2)答案见解析.【解析】(1)利用得出的递推关系,变形后可证明是等比数列,由等比数列通项公式得,然后再除以得到新数列是等差数列,从而可求得;(2)选①,直接求出,用错位相减法求和;选②,求出,用分组(并项)求和法求和;选③,求出,用裂项相消法求和【详解】解:(1)当时,因为,所以,两式相减得,.所以.当时,因为,所以,又,故,于是,所以是以4为首项2为公比的等比数列.所以,两边除以得,.又,所以是以2为首项1为公差的等差数列.所以,即.(2)若选①:,即.因为,所以.两式相减得,所以.若选②:,即.所以.若选③:,即.所以.【点睛】本题考查求等差数列、等比数列的通项公式,错位相减法求和.数列求和的常用方法:设数列是等差数列,是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的前项和应用错位相减法;(3)裂项相消法;数列(为常数,)的前项和用裂项相消法;(4)分组(并项)求和法:数列用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足(为常数)的数列,需用倒序相加法求和15、【解析】解不等式,得到或,,根据必要不充分条件,得到是A的真子集,从而求出,得到m的最大值.【详解】,解得:或,所以记或,;若“x2-2x-8>0”是“x<m”的必要不充分条件,则是A的真子集故,所以m最大值为故答案为:-216、,答案不唯一【解析】由,,可得,进而解得,然后写出通项公式即可.【详解】设数列的公差为d,由题可得,因为,,所以有,解得,只要公差d满足即可,然后根据等差数列的通项公式写出即可,我们可以取,此时.故答案为:,答案不唯一.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)答案见解析.【解析】(1)利用给定的递推公式,结合“当时,”变形,再利用等差中项的定义推理作答.(2)利用(1)的结论,利用等比中项的定义列式计算,再利用等差数列前n项和公式计算作答.【小问1详解】依题意,,当时,有,两式相减得:,同理可得,于是得,即,而当时,,所以数列为等差数列.【小问2详解】由(1)知数列为等差数列,设其首项为,公差为d,依题意,,解得或,当时,,当时,.18、(1)(2)【解析】(1)利用△∽△构造齐次方程,求出离心率,再利用焦距即可求出椭圆方程;(2)将直线方程与椭圆方程联立利用韦达定理求出和,利用几何关系可知,即可得,将韦达定理代入化简即可求得点坐标.【小问1详解】∵椭圆的焦距为,∴,即,轴,∴,则,由,,则△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,则椭圆的标准方程为,【小问2详解】设直线的方程为,且,将直线方程与椭圆方程联立得,,则,,∵,∴,∴,∴,∴,即.19、(1)或或(2)为定值,而,,均不为定值【解析】(1)过抛物线外一定点的直线恰好与该抛物线只有一个交点,则分两类分别讨论,一是直线与抛物线的对称轴平行,二是直线与抛物线相切;(2)联立直线的方程与抛物线的方程,根据韦达定理,分别表示出,,,为直线斜率的形式,便可得出结果.【小问1详解】过点的直线与抛物线仅有一个公共点,则该直线可能与抛物线的对称轴平行,也可能与抛物线相切,下面分两种情况讨论:当直线可能与抛物线的对称轴平行时,则有:当直线与抛物线相切时,由于点在轴上方,且在抛物线外,则存在两条直线与抛物线相切:易知:是其中一条直线另一条直线与抛物线上方相切时,不妨设直线的斜率为,则有:联立直线与抛物线可得:可得:则有:解得:故此时的直线的方程为:综上,直线的方程为:或或【小问2详解】若与交于A,B两点,分别设其坐标为,,且由(1)可知直线要与抛物线有两个交点,则直线的斜率存在且不为,不妨设直线的斜率为,则有:联立直线与抛物线可得:可得:,即有:根据韦达定理可得:,则有:,下面分别说明各项是否为定值:,故运算结果为定值;,故运算结果不为定值;,故运算结果不为定值;,故运算结果不为定值.综上,可得:为定值,而,,均不为定值20、(1);(2).【解析】(1)设出圆N与l的公共点坐标,再探求出点N的坐标,并由圆的性质列出方程化简即得.(2)设出直线AB的方程,与的方程联立,结合已知条件并借助韦达定理计算作答.【小问1详解】设为圆N与l的公共点,而直线轴,垂足为H,则,又,,于是得,因O,P在圆N上,即,则有,化简整理得:,所以的方程为.【小问2详解】显然直线AB不垂直于y轴,设直线AB的方程为,,由消去x并整理得:,则,因为,则点A到x轴距离是点B到x轴距离的2倍,即,由解得或,则有,因此有,所以.21、(1)证明见解析;(2).【解析】(1)消去,只保留数列的递推关系,根据题干提示来证明,注意证明首项不是零;(2)利用裂项求和来解决.【小问1详解】证明:由题意,当时,即,,整理,得,,,,数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,,则,,,,,各项相加,可得,当n=1成立,故22、(1)椭圆的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中职集合基础知识测试题库含答案
- 2025年光伏支架轻量化市场推广策略与案例报告
- 2026年志愿服务组织管理知识学习测试题含答案
- 2026年余杭区教坛新秀考试减负提质教学实践专项练习与答题指引含答案
- 2026年美的集团求职面试核心问题与实战方案含答案
- 雨课堂学堂在线学堂云《Fundamentals of Art and Design(青岛酒店管理职业技术学院)》单元测试考核答案
- 2025年建筑行业绿色建材创新及市场报告
- 医疗器械使用培训
- 生成式人工智能在高中英语课堂中的应用与自主学习能力提升策略教学研究课题报告
- 2025年环保材料回收再利用政策报告
- 继电保护装置调试作业指导书
- 老同学聚会群主的讲话发言稿
- 国家开放大学最新《监督学》形考任务(1-4)试题解析和答案
- 天然气输气管线阴极保护施工方案
- 高血压问卷调查表
- GB/T 25156-2010橡胶塑料注射成型机通用技术条件
- GB/T 25085.3-2020道路车辆汽车电缆第3部分:交流30 V或直流60 V单芯铜导体电缆的尺寸和要求
- GB/T 242-2007金属管扩口试验方法
- GB/T 21776-2008粉末涂料及其涂层的检测标准指南
- 第六单元作文素材:批判与观察 高一语文作文 (统编版必修下册)
- 全新版尹定邦设计学概论1课件
评论
0/150
提交评论