2026届北京八中高一数学第一学期期末统考试题含解析_第1页
2026届北京八中高一数学第一学期期末统考试题含解析_第2页
2026届北京八中高一数学第一学期期末统考试题含解析_第3页
2026届北京八中高一数学第一学期期末统考试题含解析_第4页
2026届北京八中高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京八中高一数学第一学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限2.若三点在同一直线上,则实数等于A. B.11C. D.33.已知角的顶点与平面直角坐标系的原点重合,始边与x轴的正半轴重合,终边经过点,若,则的值为()A. B.C. D.4.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形A.①④ B.①③④C.②③ D.①③5.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.246.下列函数中,为偶函数的是()A. B.C. D.7.定义运算:,将函数的图象向左平移的单位后,所得图象关于轴对称,则的最小值是()A. B.C. D.8.已知的图象在上存在个最高点,则的范围()A. B.C. D.9.已知函数的图像是连续的,根据如下对应值表:x1234567239-711-5-12-26函数在区间上的零点至少有()A.5个 B.4个C.3个 D.2个10.某工厂生产过程中产生的废气必须经过过滤后才能排放,已知在过滤过程中,废气中的污染物含量p(单位:毫克/升)与过滤时间t(单位:小时)之间的关系为(式中的e为自然对数的底数,为污染物的初始含量).过滤1小时后,检测发现污染物的含量减少了,要使污染物的含量不超过初始值的,至少还需过滤的小时数为()(参考数据:)A.40 B.38C.44 D.42二、填空题:本大题共6小题,每小题5分,共30分。11.______________12.当时x≠0时的最小值是____.13.集合,,则__________.14.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________15.设常数使方程在闭区间上恰有三个不同的解,则实数的取值集合为________,_______16.已知满足任意都有成立,那么的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,函数在上单调递减.(1)求;(2)若函数在区间上有且只有一个零点,求实数k的取值范围.18.已知能表示成一个奇函数和一个偶函数的和.(1)请分别求出与的解析式;(2)记,请判断函数的奇偶性和单调性,并分别说明理由.(3)若存在,使得不等式能成立,请求出实数的取值范围.19.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?20.已知集合,关于的不等式的解集为(1)求;(2)设,若集合中只有两个元素属于集合,求的取值范围21.已知全集,集合,集合(1)求集合及;(2)若集合,且,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B2、D【解析】由题意得:解得故选3、C【解析】根据终边经过点,且,利用三角函数的定义求解.【详解】因为角终边经过点,且,所以,解得,故选:C4、D【解析】根据定义分析,优美函数具备的特征是,函数关于圆心(即坐标原点)呈中心对称.【详解】对①,中心对称图形有无数个,①正确对②,函数是偶函数,不关于原点成中心对称.②错误对③,正弦函数关于原点成中心对称图形,③正确.对④,充要条件应该是关于原点成中心对称图形,④错误故选D【点睛】仔细阅读新定义问题,理解定义中优美函数的含义,找到中心对称图形,即可判断各项正误.5、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A6、D【解析】利用函数的奇偶性的定义逐一判断即可.【详解】A,因为函数定义域为:,且,所以为奇函数,故错误;B,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;C,,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;D,因为函数定义域为:R,,所以函数为偶函数,故正确;故选:D.7、C【解析】由题意可得,再根据平移得到的函数为偶函数,利用对称轴即可解出.【详解】因为,所以,其图象向左平移个单位,得到函数的图象,而图象关于轴对称,所以其为偶函数,于是,即,又,所以的最小值是故选:C.8、A【解析】根据题意列出周期应满足的条件,解得,代入周期计算公式即可解得的范围.【详解】由题可知,解得,则,故选:A【点睛】本题考查正弦函数图像的性质与周期,属于中档题.9、C【解析】利用零点存在性定理即可求解.【详解】函数的图像是连续的,;;,所以在、,之间一定有零点,即函数在区间上的零点至少有3个.故选:C10、A【解析】由题意,可求解,解不等式即得解【详解】根据题设,得,∴,所以;由,得,两边取10为底对数,并整理得,∴,因此,至少还需过滤40小时故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用指数的运算法则和对数的运算法则即求.【详解】原式.故答案为:.12、【解析】直接利用基本不等式的应用求出结果【详解】解:由于,所以(当且仅当时,等号成立)故最小值为故答案为:13、【解析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【详解】因为,,所以.故答案为:【点睛】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.14、②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷15、①.②.【解析】利用辅助角公式可将问题转化为在上直线与三角函数图象的恰有三个交点,利用数形结合可确定的取值;由的取值可求得的取值集合,从而确定的值,进而得到结果.【详解】,方程的解即为在上直线与三角函数图象的交点,由图象可知:当且仅当时,直线与三角函数图象恰有三个交点,即实数的取值集合为;,或,即或,此时,,,.故答案为:;.【点睛】思路点睛:本题考查与三角函数有关的方程根的个数问题,解决方程根的个数的基本思路是将问题转化为两函数交点个数问题,从而利用数形结合的方式来进行求解.16、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)分析得到关于的不等式,解不等式即得解;(2)等价于函数与函数的图象在区间上有且只有一个交点,再对分类讨论得解.【小问1详解】解:因为,在上单调递减,所以,解得.又,且,解得.综上,.【小问2详解】解:由(1)知,所以.由于函数在区间上有且只有一个零点,等价于函数与函数的图象在区间上有且只有一个交点.①当即时,函数单调递增,,于是有,解得;②当即时,函数先增后减有最大值,于是有即,解得.故k的取值范围为.18、(1);(2)见解析;(3).【解析】(1)由函数方程组可求与的解析式.(2)利用奇函数的定义和函数单调性定义可证明为奇函数且为上的增函数.(3)根据(2)中的结果可以得到在上有解,参变分离后利用换元法可求的取值范围.【详解】(1)由已知可得,则,由为奇函数和为偶函数,上式可化为,联合,解得.(2)由(1)得定义域,①由,可知为上的奇函数.②由,设,则,因为,故,,故即,故在上单调递增(3)由为上的奇函数,则等价于,又由在上单调递增,则上式等价于,即,记,令,可得,易得当时,即时,由题意知,,故所求实数的取值范围是.【点睛】本题考查与指数函数有关的复合函数的单调性和奇偶性以及函数不等式有解,前者根据定义进行判断,后者利用单调性和奇偶性可转化为常见不等式有解,本题综合性较高.19、(1);(2)当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.【解析】⑴设出函数解析式,根据图象,即可求得答案;⑵确定总利润函数,换元,利用配方法可求最值;解析:(1)根据题意可设,则f(x)=0.25x(x≥0),g(x)=2(x≥0).(2)设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元则y=(18-x)+2,0≤x≤18令=t,t∈[0,3],则y=(-t2+8t+18)=-(t-4)2+.所以当t=4时,ymax==8.5,此时x=16,18-x=2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约8.5万元.20、(1)或;(2).【解析】(1)解分式不等式得集合A,解绝对值不等式得集合B,由集合的补运算和交运算的定义可得结论;(2)由(1)知集合P={-2,2,3},而集合Q中最大与最小值差为2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论