北京市大兴区2026届数学高一上期末复习检测试题含解析_第1页
北京市大兴区2026届数学高一上期末复习检测试题含解析_第2页
北京市大兴区2026届数学高一上期末复习检测试题含解析_第3页
北京市大兴区2026届数学高一上期末复习检测试题含解析_第4页
北京市大兴区2026届数学高一上期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市大兴区2026届数学高一上期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在一次数学实验中,某同学运用图形计算器采集到如下一组数据:x01.002.03.0y0.240.5112.023.988.02在四个函数模型(a,b为待定系数)中,最能反映,y函数关系的是().A. B.C. D.2.若方程的两实根中一个小于,另一个大于,则的取值范围是()A. B.C. D.3.如果函数在区间上单调递减,则的取值范围是()A. B.C. D.以上选项均不对4.若方程表示圆,则实数的取值范围为()A. B.C. D.5.若函数在上是增函数,则实数的取值范围是()A. B.C. D.6.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()A. B.-C.2 D.7.已知函数与的部分图象如图1(粗线为部分图象,细线为部分图象)所示,则图2可能是下列哪个函数的部分图象()A. B.C. D.8.已知,则()A. B.C.2 D.9.已知定义域为R的偶函数在上是减函数,且,则不等式的解集为()A. B.C. D.10.已知二次函数值域为,则的最小值为()A.16 B.12C.10 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》是中国古代的数学名著,其中《方田》一章涉及到了弧田面积的计算问题,如图所示,弧田是由弧AB和弦AB所围成的图中阴影部分若弧田所在圆的半径为1,圆心角为,则此弧田的面积为____________.12.已知,函数,若函数有两个零点,则实数k的取值范围是________13.设函数(e为自然对数的底数,a为常数),若为偶函数,则实数______;若对,恒成立,则实数a的取值范围是______14.化简=________15.若,,则________.16.已知是第四象限角且,则______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.画出函数f(x)=|log3x|的图像,并求出其值域、单调区间以及在区间上的最大值.18.若存在实数、使得,则称函数为、的“函数”(1)若.为、的“函数”,其中为奇函数,为偶函数,求、的解析式;(2)设函数,,是否存在实数、使得为、的“函数”,且同时满足:①是偶函数;②的值域为.若存在,请求出、的值;若不存在,请说明理由.(注:为自然数.)19.在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的a存在,求a的值;若a不存在,请说明理由.已知集合________,.若“”是“”的充分不必要条件,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分20.设直线l的方程为.(1)若l在两坐标轴上的截距相等,求直线l的方程(2)若l在两坐标轴上的截距互为相反数,求a.21.,,且,,且为偶函数(1)求;(2)求满足,的的集合

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题中表格数据画出散点图,由图观察实验室指数型函数图象【详解】由题中表格数据画出散点图,如图所示,观察图象,类似于指数函数对于A,是一次函数,图象是一条直线,所以A错误,对于B,是指数型函数,所以B正确,对于C,是对数型函数,由于表中的取到了负数,所以C错误,对于D,是反比例型函数,图象是双曲线,所以D错误,故选:B2、A【解析】设,根据二次函数零点分布可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】由可得,令,由已知可得,解得,故选:A.3、A【解析】先求出二次函数的对称轴,由区间,在对称轴的左侧,列出不等式解出的取值范围【详解】解:函数的对称轴方程为:,函数在区间,上递减,区间,在对称轴的左侧,,故选:A【点睛】本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题4、D【解析】将方程化为标准式即可.【详解】方程化为标准式得,则.故选:D.5、B【解析】令,则可得,解出即可.【详解】令,其对称轴为,要使在上是增函数,则应满足,解得.故选:B.6、A【解析】如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角【详解】解:如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角设,则,,,异面直线与所成角的余弦值为,故选:A【点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角7、B【解析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知为偶函数,为奇函数,A选项,,所以是偶函数,不符合图2.A错.C选项,,所以是偶函数,不符合图2.C错.D选项,,所以的定义域不包括,不符合图2.D错.B选项,,所以是奇函数,符合图2,所以B符合.故选:B8、B【解析】先求出,再求出,最后可求.【详解】因为,故,因为,故,而,故,所以,故,所以,故选:B9、A【解析】根据偶函数的性质可得在上是增函数,且.由此将不等式转化为来求解得不等式的解集.【详解】因为偶函数在上是减函数,所以在上是增函数,由题意知:不等式等价于,即,即或,解得:或.故选:A【点睛】本小题主要考查函数的奇偶性以及单调性,考查对数不等式的解法,属于中档题.10、D【解析】根据二次函数的值域求出a和c的关系,再利用基本不等式即可求的最小值.【详解】由题意知,,∴且,∴,当且仅当,即,时取等号.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意所求面积,再根据扇形和三角形面积公式,进行求解即可.【详解】易知为等腰三角形,腰长为,底角为,,所以,弧田的面积即图中阴影部分面积,根据扇形面积及三角形面积可得:所以.故答案为:.12、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想13、①.1②.【解析】第一空根据偶函数的定义求参数,第二空为恒成立问题,参变分离后转化成求函数最值【详解】由,即,关于恒成立,故恒成立,等价于恒成立令,,,故a的取值范围是故答案为:1,14、【解析】利用对数的运算法则即可得出【详解】解:原式lg0.12=2+2lg10﹣1=2﹣2故答案为【点睛】本题考查了对数的运算法则,属于基础题15、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:16、【解析】直接由平方关系求解即可.【详解】由是第四象限角,可得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、图象见解析,值域为[0,+∞),单调递增区间[1,+∞),单调递减区间是(0,1),最大值为2.【解析】由于f(x)=|log3x|=所以在[1,+∞)上f(x)图像与y=log3x的图像相同,在(0,1)上的图像与y=log3x的图像关于x轴对称,由此可画出函数的图像,再结合函数的图像可求出函数的值域和单调区间,及最值【详解】因为f(x)=|log3x|=所以在[1,+∞)上f(x)的图像与y=log3x的图像相同,在(0,1)上的图像与y=log3x的图像关于x轴对称,据此可画出其图像,如图所示.由图像可知,函数f(x)的值域为[0,+∞),单调递增区间是[1,+∞),单调递减区间是(0,1).当x∈时,f(x)在区间上是单调递减的,在(1,6]上是单调递增的.又f=2,f(6)=log36<2,故f(x)在区间上的最大值为2.【点睛】此题考查含绝对值对数型函数的图像和性质,考查数形结合的思想,属于基础题18、(1),;(2)存在;,.【解析】(1)由已知条件可得出关于、的等式组,由此可解得函数、的解析式;(2)由偶函数的定义可得出,由函数的值域结合基本不等式以及对数函数的单调性可求得的值,进而可求得的值,即可得解.【小问1详解】解:因为为、的“函数”,所以①,所以因为为奇函数,为偶函数,所以,所以②联立①②解得,【小问2详解】解:假设存在实数、,使得为,的“函数”则①因为是偶函数,所以即,即,因为,整理得因为对恒成立,所②,因为,当且仅当,即时取等号所以,由于的值域为,所以,且又因为,所以,综上,存在,满足要求19、见解析【解析】首先解一元二次不等式求出集合B,依题意B,再根据所选条件得到不等式组,解得即可;【详解】解:由,所以,解得所以.由题意知,A不为空集,选条件①时,,因为“”是“”充分不必要条件,所以B,,则,等号不同时取到,解得.所以实数a的取值范围是.当选条件②时,因为“”是“”的充分不必要条件,所以B,所以,解得.此时,不符合条件故不存在的值满足题意.当选条件③时,因为“”是“”的充分不必要条件,所以B,所以,该不等式组无解,故不存在的值满足题意.20、(1)3x+y=0或x+y+2=0.(2)a=2或a=-2【解析】(1)直线在两坐标轴上的截距相等,有两种情况:截距为0和截距不为0,分别求出两种情况下的a的值,即得直线l的方程;(2)直线在两坐标轴上的截距互为相反数,由(1)可知有,解方程可得a。【详解】(1)当直线过原点时,该直线在x轴和y轴上截距为零,∴a=2,方程即为,当直线不经过原点时,截距存在且均不为0.∴,即a+1=1.∴a=0,方程即为x+y+2=0.综上,直线l的方程为3x+y=0或x+y+2=0.(2)由,得a-2=0或a+1=-1,∴a=2或a=-2.【点睛】第一个问中,直线在两坐标轴上的截距相等,注意不要忽略截距为0的情况。21、(1);(2)【解析】(1)首先利用向量数量积的坐标运算并且结合二倍角公式与两角和的正弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论