版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江省嘉兴一中高二上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的渐近线方程为A. B.C. D.2.已知、,直线,,且,则的最小值为()A. B.C. D.3.函数,则曲线在点处的切线方程为()A. B.C. D.4.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.5.复数的共轭复数的虚部为()A. B.C. D.6.已知椭圆C:的左,右焦点,过原点的直线l与椭圆C相交于M,N两点.其中M在第一象限.,则椭圆C的离心率的取值范围为()A. B.C. D.7.已知m是2与8的等比中项,则圆锥曲线x2﹣=1的离心率是()A.或 B.C. D.或8.已知,分别为双曲线:的左,右焦点,以为直径的圆与双曲线的右支在第一象限交于点,直线与双曲线的右支交于点,点恰好为线段的三等分点(靠近点),则双曲线的离心率等于()A. B.C. D.9.阅读程序框图,该算法的功能是输出A.数列的第4项 B.数列的第5项C.数列的前4项的和 D.数列的前5项的和10.为了调查修水县2019年高考数学成绩,在高考后对我县6000名考生进行了抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本,这项调查宜采用的抽样方法是()A.系统抽样法 B.分层抽样法C.抽签法 D.简单的随机抽样法11.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A.3 B.6C.8 D.1212.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为()A.120 B.84C.56 D.28二、填空题:本题共4小题,每小题5分,共20分。13.如图是一个边长为2的正方体的平面展开图,在这个正方体中,则下列说法中正确的序号是___________.①直线与直线垂直;②直线与直线相交;③直线与直线平行;④直线与直线异面;14.如图,在棱长为1的正方体中,点M为线段上的动点,下列四个结论:①存在点M,使得直线AM与直线夹角为30°;②存在点M,使得与平面夹角的正弦值为;③存在点M,使得三棱锥体积为;④存在点M,使得,其中为二面角的大小,为直线与直线AB所成的角则上述结论正确的有______.(填上正确结论的序号)15.已知向量、满足,,且,则与的夹角为___________.16.在空间直角坐标系中,已知向量,则在轴上的投影向量为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)城南公园种植了4棵棕榈树,各棵棕榈树成活与否是相互独立的,成活率为p,设为成活棕榈树的株数,数学期望.(1)求p的值并写出的分布列;(2)若有2棵或2棵以上的棕榈树未成活,则需要补种,求需要补种棕榈树的概率.18.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,求数列的前项和为.19.(12分)已知椭圆的离心率为,点在椭圆上.(1)求椭圆的方程;(2)过点作轴的平行线交轴于点,过点的直线与椭圆交于两个不同的点、,直线、与轴分别交于、两点,若,求直线的方程;(3)在第(2)问条件下,点是椭圆上的一个动点,请问:当点与点关于轴对称时的面积是否达到最大?并说明理由.20.(12分)某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是8万千克,每种植1万千克莲藕,成本增加0.5万元.种植万千克莲藕的销售额(单位:万元)是(是常数),若种植2万千克莲藕,利润是1.5万元,求:(1)种植万千克莲藕利润(单位:万元)为的解析式;(2)要使利润最大,每年需种植多少万千克莲藕,并求出利润的最大值.21.(12分)为了保证我国东海油气田海域海上平台的生产安全,海事部门在某平台O的北偏西45°方向km处设立观测点A,在平台O的正东方向12km处设立观测点B,规定经过O、A、B三点的圆以及其内部区域为安全预警区.如图所示:以O为坐标原点,O的正东方向为x轴正方向,建立平面直角坐标系(1)试写出A,B的坐标,并求两个观测点A,B之间的距离;(2)某日经观测发现,在该平台O正南10kmC处,有一艘轮船正以每小时km的速度沿北偏东45°方向行驶,如果航向不变,该轮船是否会进入安全预警区?如果不进入,请说明理由;如果进入,则它在安全警示区内会行驶多长时间?22.(10分)已知数列的前项和为,且,,数列是公差不为0的等差数列,满足,且,,成等比数列.(1)求数列和通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据双曲线的渐近线方程知,,故选A.2、D【解析】先由,可得,变形得,所以,化简后利用基本不等式求解即可【详解】因为、,直线,,且,所以,即,所以,所以,所以,当且仅当,即时,取等号,所以的最小值为,故选:D3、D【解析】对函数求导,利用导数的几何意义求出切线斜率即可计算作答.【详解】依题意,,即有,而,则过点,斜率为1的直线方程为:,所以曲线在点处切线方程为.故选:D4、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.5、B【解析】先根据复数除法与加法运算求解得,再求共轭复数及其虚部.【详解】解:,所以其共轭复数为,其虚部为故选:B6、D【解析】由题设易知四边形为矩形,可得,结合已知条件有即可求椭圆C的离心率的取值范围.【详解】由椭圆的对称性知:,而,又,即四边形为矩形,所以,则且M在第一象限,整理得,所以,又即,综上,,整理得,所以.故选:D.【点睛】关键点点睛:由椭圆的对称性及矩形性质可得,由已知条件得到,进而得到椭圆参数的齐次式求离心率范围.7、A【解析】利用等比数列求出m,然后求解圆锥曲线的离心率即可【详解】解:m是2与8的等比中项,可得m=±4,当m=4时,圆锥曲线为双曲线x2﹣=1,它的离心率为:,当m=-4时,圆锥曲线x2﹣=1为椭圆,离心率:,故选:A8、C【解析】设,,根据双曲线的定义可得,,在中由勾股定理列方程可得,在中由勾股定理可得关于,的方程,再由离心率公式即可求解.【详解】设,则,由双曲线的定义可得:,,因为点在以为直径的圆上,所以,所以,即,解得:,在中,,,,由可得,即,所以双曲线离心率为,故选:C.第II卷(非选择题9、B【解析】分析:模拟程序的运行,依次写出每次循环,直到满足条件,退出循环,输出A的值即可详解:模拟程序的运行,可得:
A=0,i=1执行循环体,,
不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{}的第5项.所以B选项是正确的.点睛:模拟程序的运行,依次写出每次循环得到的A,i的值,当i=6时满足条件,退出循环,输出A的值,观察规律即可得解.10、B【解析】考生分为几个不同的类型或层次,由此可以确定抽样方法;【详解】6000名考生进行抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本又文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好故选:B.【点睛】本题主要考查的是分层抽样,掌握分层抽样的有关知识是解题的关键,属于基础题.11、B【解析】根据椭圆中的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以,,可得,,所以,可得,所以该椭圆的短轴长,故选:B.12、B【解析】按照框图中程序,逐步执行循环,即可求得答案.【详解】第一次循环:,,第二次循环:,,第三次循环:,,第四次循环:,,第五次循环:,,第六次循环:,,第七次循环:,,退出循环,输出.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①④【解析】画出正方体,,,故,①正确,根据相交推出矛盾得到②错误,根据,与相交得到③错误,排除共面的情况得到④正确,得到答案.【详解】如图所示的正方体中,,,故,①正确;若直线与直线相交,则四点共面,即在平面内,不成立,②错误;,与相交,故直线与直线不平行,③错误;,与不平行,故与不平行,若与相交,则四点共面,在平面内,不成立,故直线与直线异面,④正确;故答案为:①④.14、②③【解析】对①:由连接,,由平面,即可判断;对③:设到平面的距离为,则,所以即可判断;对④:以为坐标原点建立如图所示的空间直角坐标系,设,利用向量法求出与,比较大小即可判断;对②:设与平面夹角为,利用向量法求出,即可求解判断.【详解】解:对①:连接,,在正方体中,由平面,可得,又,,所以平面,所以,故①错误;对③:设到平面的距离为,则,所以,故③正确;对④:以为坐标原点建立如图所示的空间直角坐标系,设,则,0,,,0,,,,,,,,所以,,,,,,设平面的法向量为,,,则,即,取,,,又,1,是平面的一个法向量,又二面角为锐二面角或直角,所以,,,又,,,故④错误对②:由④的解析知,,,,设平面的法向量为,则,即,取,则,设与平面夹角为,令,即,又,解得或,故②正确.故答案为:②③.15、##【解析】根据向量数量积的计算公式即可计算.【详解】,,.故答案为:﹒16、【解析】根据向量坐标意义及投影的定义得解.【详解】因为向量,所以在轴上的投影向量为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),分布列见解析;(2).【解析】(1)根据二项分布知识即可求解;(2)将补种棕榈树的概率转化为成活的概率,结合概率加法公式即可求解.【小问1详解】由题意知,,又,所以,故未成活率为,由于所有可能的取值为0,1,2,3,4,所以,,,,,则的分布列为01234【小问2详解】记“需要补种棕榈树”为事件A,由(1)得,,所以需要补种棕榈树的概率为.18、(1);(2).【解析】(1)利用可求得结果;(2)由(1)可得,利用裂项相消法可求得结果.【小问1详解】当时,;当时,,;经检验:满足;综上所述:.【小问2详解】由(1)得:,.19、(1);(2);(3)当点与点关于轴对称时,的面积达到最大,理由见解析.【解析】(1)设,可得出,,将点的坐标代入椭圆的方程,求出的值,即可得出椭圆的方程;(2)分析可知直线的斜率存在,设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得,结合韦达定理可求得的值,即可得出直线的方程;(3)设与直线平行且与椭圆相切的直线的方程为,将该直线方程与椭圆的方程联立,由判别式为零可求得,分析可知当点为直线与椭圆的切点时,的面积达到最大,求出直线与椭圆的切点坐标,可得出结论.【小问1详解】解:因为,设,则,,所以,椭圆的方程可表示为,将点的坐标代入椭圆的方程可得,解得,因此,椭圆的方程为.【小问2详解】解:设线段的中点为,因为,则轴,故直线、的倾斜角互补,易知点,若直线轴,则、为椭圆短轴的两个顶点,不妨设点、,则,,,不合乎题意.所以,直线的斜率存在,设直线的方程为,设点、,联立,可得,,由韦达定理可得,,,,则,所以,解得,因此,直线的方程为.【小问3详解】解:设与直线平行且与椭圆相切的直线的方程为,联立,可得(*),,解得,由题意可知,当点为直线与椭圆的切点时,此时的面积取最大值,当时,方程(*)为,解得,此时,即点.此时,点与点关于轴对称,因此,当点与点关于轴对称时,的面积达到最大.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值20、(1),;(2)6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多组学数据与影像手术整合分析
- 2025年高职(服装与服饰设计)创意开发阶段测试题及答案
- 2025年大学美术学(美术鉴赏)试题及答案
- 2025年高职飞行器设计与工程(飞行器动力装置)试题及答案
- 2025年大学机械工程(数控技术)试题及答案
- 2026年智能车载胎压监测器项目营销方案
- 2025年高职社区管理与服务(社区管理实务)试题及答案
- 2025年高职(应用化工技术)化工安全技术试题及答案
- 2025年大学物流(物流风险管理)试题及答案
- 2025年中职幼儿教育(幼儿社会教育)试题及答案
- 急性毒性测试:类器官芯片的快速响应
- 骨科护理标准操作流程手册
- 产品推广专员培训
- DB65T 3119-2022 建筑消防设施管理规范
- 黄色垃圾袋合同
- 书黄筌画雀文言文课件
- 基于数字孪生的深海石油钻井装备制造过程优化-洞察及研究
- 事业单位职工劳动合同管理规范
- 老年人静脉输液技巧
- 呼吸内科一科一品护理汇报
- 陪诊师医学知识培训总结课件
评论
0/150
提交评论