版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届西双版纳市重点中学数学高二上期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知一个乒乓球从米高的高度自由落下,每次落下后反弹的高度是原来高度的倍,则当它第8次着地时,经过的总路程是()A. B.C. D.2.命题“若,则”的否命题是()A.若,则 B.若,则C.若,则 D.若,则3.设集合或,,则()A. B.C. D.4.在棱长均为1的平行六面体中,,则()A. B.3C. D.65.已知,若与的展开式中的常数项相等,则()A.1 B.3C.6 D.96.已知圆的方程为,则圆心的坐标为()A. B.C. D.7.已知各项都为正数的等比数列,其公比为q,前n项和为,满足,且是与的等差中项,则下列选项正确的是()A. B.C D.8.函数在区间上平均变化率等于()A. B.C. D.9.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值10.过点且与直线垂直的直线方程是()A. B.C. D.11.已知椭圆的一个焦点坐标是,则()A.5 B.2C.1 D.12.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.0二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,满足,则________14.如图,在正四棱锥中,为棱PB的中点,为棱PD的中点,则棱锥与棱锥的体积之比为______15.如图,已知椭圆E的方程为(a>b>0),A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆的离心率等于________16.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第七个孩子分得斤数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,,,,分别为,的中点(1)求证:;(2)求直线与平面所成角的正弦值18.(12分)已知等差数列公差不为0,且成等比数列.(1)求数列的通项公式及其前n项和;(2)记,求数列的前n项和.19.(12分)在等比数列中,已知,(1)若,求数列的前项和;(2)若以数列中的相邻两项,构造双曲线,求证:双曲线系中所有双曲线的渐近线、离心率都相同20.(12分)如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为ABC.已知,,M为AB中点.(1)证明:平面;(2)求此几何体的体积.21.(12分)在中,角、、C所对的边分别为、、,,.(1)若,求的值;(2)若的面积,求,的值.22.(10分)“绿水青山就是金山银山”,中国一直践行创新、协调、绿色、开放、共享的发展理念,着力促进经济实现高质量发展,决心走绿色、低碳、可持续发展之路.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向工业部表示,到2026届我国新能源汽车销量占总销量将达20%以上.2021年,某集团以20亿元收购某品牌新能源汽车制造企业,并计划投资30亿元来发展该品牌.2021年该品牌汽车的销售量为10万辆,每辆车的平均销售利润为3000元.据专家预测,以后每年销售量比上一年增加10万辆,每辆车的平均销售利润比上一年减少10%(1)若把2021年看作第一年,则第n年的销售利润为多少亿元?(2)到2027年年底,该集团能否通过该品牌汽车实现盈利?(实现盈利即销售利润超过总投资,参考数据:,,)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等比数列的求和公式求解即可.【详解】从第1次着地到第2次着地经过的路程为,第2次着地到第3次着地经过的路程为,组成以为首项,公比为的等比数列,所以第1次着地到第8次着地经过的路程为,所以经过的总路程是.故答案为:C.2、B【解析】根据原命题的否命题是条件结论都要否定【详解】解:因为原命题的否命题是条件结论都要否定所以命题“若,则”的否命题是若,则;故选:B3、B【解析】根据交集的概念和运算直接得出结果.【详解】由题意知,.故选:B.4、C【解析】设,,,利用结合数量积的运算即可得到答案.【详解】设,,,由已知,得,,,,所以,所以.故选:C5、B【解析】根据二项展开式的通项公式即可求出【详解】的展开式中的常数项为,而的展开式中的常数项为,所以,又,所以故选:B6、A【解析】将圆的方程配成标准方程,可求得圆心坐标.【详解】圆的标准方程为,圆心的坐标为.故选:A.7、D【解析】根据题意求得,即可判断AB,再根据等比数列的通项公式即可判断C;再根据等比数列前项和公式即可判断D.【详解】解:因为各项都为正数的等比数列,,所以,又因是与的等差中项,所以,即,解得或(舍去),故B错误;所以,故A错误;所以,故C错误;所以,故D正确.故选:D.8、C【解析】根据平均变化率的定义算出答案即可.【详解】函数在区间上的平均变化率等于故选:C9、D【解析】则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减10、C【解析】根据两直线垂直时斜率乘积为,可以直接求出所求直线的斜率,再根据点斜式求出直线方程,最后化成一般式方程即可.【详解】因为直线的斜率为,故所求直线的斜率等于,所求直线的方程为,即,故选:C11、C【解析】根据题意椭圆焦点在轴上,且,将椭圆方程化为标准形式,从而得出,得出答案.【详解】由焦点坐标是,则椭圆焦点在轴上,且将椭圆化为,则由,焦点坐标是,则,解得故选:C12、A【解析】先化简A-B,发现其结果为二项式展开式,然后计算即可【详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【点睛】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、15【解析】根据递推公式,依次代入即可求解.【详解】数列满足,当时,可得,当时,可得,当时,可得,故答案为:15.14、【解析】根据图形可求出与棱锥的体积之比,即可求出结果【详解】如图所示:棱锥可看成正四棱锥减去四个小棱锥的体积得到,设正四棱锥的体积为,为PB的中点,为PD的中点,所以,而,同理,故棱锥的体积的为,即棱锥与棱锥的体积之比为故答案为:.15、【解析】首先利用椭圆的对称性和为平行四边形,可以得出、两点是关于轴对称,进而得到;设,,,从而求出,然后由,利用,求得,最后根据得出离心率【详解】解:是与轴重合的,且四边形为平行四边形,所以、两点的纵坐标相等,、的横坐标互为相反数,、两点是关于轴对称的由题知:四边形为平行四边形,所以可设,,代入椭圆方程解得:设为椭圆的右顶点,,四边形为平行四边形对点:解得:根据:得:故答案为:16、167【解析】由题设知8个孩子分得斤数是公差为17的等差数列,设第一个孩子分得斤,应用等差数列前n项和公式求,进而由等差数列通项公式求即可.【详解】由题意,设第一个孩子分得斤,则,所以,可得,故斤.故答案为:167.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用空间向量求出空间直线的向量积,即可证明两直线垂直.(2)利用空间向量求直线与平面所成空间角的正弦就是就出平面的法向量与直线的方向向量之间夹角的余弦即可.【小问1详解】如图,以为坐标原点,,,所在直线为,,轴,建立空间直角坐标系,则,,,,,因为,,所以,即;【小问2详解】设平面的法向量为因为,由,得,令,则所以平面的一个法向量为,又所以故直线与平面所成角的正弦值为18、(1),(2)【解析】(1)根据分式的合分比性质以及等差数列的性质即可求出;(2)根据裂项相消法即可求出【小问1详解】由题意:,即,又∵,∴,∴,∴,.【小问2详解】因为,∴.19、(1);(2)证明过程见解析.【解析】(1)根据等比数列的通项公式,结合对数的运算性质、等比数列和等差数列前项和公式进行求解即可;(2)根据等比数列的通项公式,结合双曲线渐近线方程和离心率公式进行证明即可.【小问1详解】设等比数列的公比为,因为,所以,因此,所以,所以;【小问2详解】由(1)知,在双曲线中,,所以得,因此双曲线的渐近线方程为:,双曲线的离心率为:,所以双曲线系中所有双曲线的渐近线、离心率都相同.20、(1)证明见解析(2)【解析】(1)取的中点,连接,,可得四边形为平行四边形,从而可得,然后证明平面,从而可证明.(2)过作截面平面,分别交,于,,连接,作于,由所求几何体体积为从而可得答案.【小问1详解】如图,取的中点,连接,,因为,分别是,的中点.所以且又因为,,所以且,故四边形为平行四边形,所以.因为正三角形,是的中点,所以,又因为平面,所以,又,所以平面又,所以平面.【小问2详解】如图,过作截面平面,分别交,于,,连接,作于,因为平面平面,所以,结合直三棱柱的性质,则平面因为,,,所以.所以所求几何体体积为21、(1)(2),【解析】(1)根据同角三角函数的基本关系求解的值,再结合正弦定理求解即可;(2)根据三角形的面积可求解出边c的值,再运用余弦定理求解边b.【详解】(1),且,.由正弦定理得,.(2),.由余弦定理得,.22、(1)亿元(2)该集团能通过该品牌汽车实现盈利【解析】(1)由题意可求得第n年的销售量,第n年每辆车的平均销售利润,从而可求出第n年的销售利润,(2)利用错位相减法求出到20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险合规考试试题及答案
- 大数据驱动的职业性放射病风险预测研究-1
- 大数据赋能精准医学人才培养模式
- 大数据在慢病健康促进中的应用
- 导演考试题及答案
- 多维度分层在个体化手术中的应用
- 2025年大学大二(商务策划)方案撰写综合测试题及答案
- 2025年高职旅游服务与管理(导游词撰写)试题及答案
- 2025年中职(工业机器人技术应用)机器人传感器应用试题及答案
- 2025年高职(环境监测技术)环境工程原理实务试题及答案
- 吴江三小英语题目及答案
- 2025年事业单位笔试-河北-河北药学(医疗招聘)历年参考题库含答案解析(5卷套题【单选100题】)
- 集团债权诉讼管理办法
- 钢结构施工进度计划及措施
- 智慧健康养老服务与管理专业教学标准(高等职业教育专科)2025修订
- 珠宝首饰售后服务与保修合同
- 2025年广东省惠州市惠城区中考一模英语试题(含答案无听力原文及音频)
- 煤矿皮带输送机跑偏原因和处理方法
- 征兵体检超声诊断
- 创伤后应激障碍的心理护理
- 医疗项目年度总结模板
评论
0/150
提交评论