版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市宝坻区2026届高一数学第一学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=ax﹣2+1(a>0且a≠1)的图象必经过点A.(0,1) B.(1,1)C.(2,0) D.(2,2)2.下列函数在其定义域内是增函数的是()A. B.C. D.3.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到4.函数y=的单调递减区间是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)5.已知函数,函数,若有两个零点,则m的取值范围是()A. B.C. D.6.设集合M={x|x=×180°+45°,k∈Z},N={x|x=×180°+45°,k∈Z},那么()A.M=N B.N⊆MC.M⊆N D.M∩N=∅7.下列结论中正确的是()A.当时,无最大值 B.当时,的最小值为3C.当且时, D.当时,8.为了得到的图象,可以将的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位9.黄金分割比例广泛存在于许多艺术作品中.在三角形中,底与腰之比为黄金分割比的三角形被称作黄金三角形,被认为是最美的三角形,它是两底角为72°的等腰三角形.达芬奇的名作《蒙娜丽莎》中,在整个画面里形成了一个黄金三角形.如图,在黄金三角形中,,根据这些信息,可得()A. B.C. D.10.函数的单调递减区间是()A.() B.()C.() D.()二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.12.已知角的终边过点,则___________.13.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________14.写出一个满足,且的函数的解析式__________15.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___16.设,,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边过点(1)求值(2)已知,求的值18.对于两个定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的.(1)若是由“基函数,”生成的,求实数的值;(2)试利用“基函数,”生成一个函数,且同时满足以下条件:①是偶函数;②的最小值为1.求的解析式.19.已知函数,函数(1)求函数的值域;(2)若不等式对任意实数恒成立,求实数的取值范围20.函数的部分图象如图所示.(1)求、及图中的值;(2)设,求函数在区间上的最大值和最小值21.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据a0=1(a≠0)时恒成立,我们令函数y=ax﹣2+1解析式中的指数部分为0,即可得到函数y=ax﹣2+1(a>0且a≠1)的图象恒过点的坐标解:∵当X=2时y=ax﹣2+1=2恒成立故函数y=ax﹣2+1(a>0且a≠1)的图象必经过点(2,2)故选D考点:指数函数的单调性与特殊点2、A【解析】函数在定义域内单调递减,排除B,单调区间不能用并集连接,排除CD.【详解】定义域为R,且在定义域上单调递增,满足题意,A正确;定义域为,在定义域内是减函数,B错误;定义域为,而在为单调递增函数,不能用并集连接,C错误;同理可知:定义域为,而在区间上单调递增,不能用并集连接,D错误.故选:A3、D【解析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【详解】变换到,需要向右平移个单位.故选:D【点睛】函数图像平移异名化同名的公式:,.4、A【解析】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,再结合二次函数的性质可得函数t的增区间【详解】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,由二次函数的性质可得函数t的增区间为(-∞,1),所以函数的单调递减区间为(-∞,1).故答案为A【点睛】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.5、A【解析】存在两个零点,等价于与的图像有两个交点,数形结合求解.【详解】存在两个零点,等价于与的图像有两个交点,在同一直角坐标系中绘制两个函数的图像:由图可知,当直线在处的函数值小于等于1,即可保证图像有两个交点,故:,解得:故选:A.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.6、C【解析】变形表达式为相同的形式,比较可得【详解】由题意可即为的奇数倍构成的集合,又,即为的整数倍构成的集合,,故选C【点睛】本题考查集合的包含关系的判定,变形为同样的形式比较是解决问题的关键,属基础题7、D【解析】利用在单调递增,可判断A;利用均值不等式可判断B,D;取可判断C【详解】选项A,由都在单调递增,故在单调递增,因此在上当时取得最大值,选项A错误;选项B,当时,,故,当且仅当,即时等号成立,由于,故最小值3取不到,选项B错误;选项C,令,此时,不成立,故C错误;选项D,当时,,故,当且仅当,即时,等号成立,故成立,选项D正确故选:D8、A【解析】根据左加右减原则,只需将函数向左平移个单位可得到.【详解】,即向左平移个单位可得到.故选:A【点睛】本题考查正弦型函数的图像与性质,三角函数诱导公式,属于基础题.9、B【解析】由题意,结合二倍角余弦公式、平方关系求得,再根据诱导公式即可求.【详解】由题设,可得,,所以,又,所以.故选:B10、A【解析】根据余弦函数单调性,解得到答案.【详解】解:,令,,解得,,故函数的单调递减区间为;故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.12、【解析】根据角终边所过的点,求得三角函数,即可求解.【详解】因为角的终边过点则所以故答案为:【点睛】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.13、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.14、(答案不唯一)【解析】根据题意可知函数关于对称,写出一个关于对称函数,再检验满足即可.【详解】由,可知函数关于对称,所以,又,满足.所以函数的解析式为(答案不唯一).故答案为:(答案不唯一).15、【解析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.16、【解析】利用向量的坐标运算先求出的坐标,再利用向量的数量积公式求出的值【详解】因为,,,所以,所以,故答案为【点睛】本题考查向量的坐标运算,考查向量的数量积公式,熟记坐标运算法则,准确计算是关键,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)依题意,将原式利用诱导公式化简,分子分母同除,代入正切计算可求出结果.(2)由终边所过点以及二倍角公式可计算和的三角函数值,利用平方和为1求出,代入两角和的余弦可计算的值.【小问1详解】依题意,原式【小问2详解】因为是第一象限角,且终边过点,所以,,所以,,因为,且,所以,所以18、(1);(2)【解析】⑴由已知得,求解即可求得实数的值;⑵设,则,继而证得是偶函数,可得与的关系,得到函数解析式,设,则由,即可求解的最小值为解析:(1)由已知得,即,得,所以.(2)设,则.由,得,整理得,即,即对任意恒成立,所以.所以.设,令,则,改写为方程,则由,且,得,检验时,满足,所以,且当时取到“=”.所以,又最小值为1,所以,且,此时,所以.点睛:本题考查了学生对新定义的理解,方程的思想,对数的运算性质,不等式的性质以及函数的最值求法.考查了函数的最值及其几何意义,函数解析式的求解及其常用方法,本题涉及的函数的性质较多,综合性抽象性很强,做题的时候要做到每一步变化严谨19、(1)(2)【解析】(1)化简后由对数函数的性质求解(2)不等式恒成立,转化为最值问题求解【小问1详解】故的值域为【小问2详解】∵不等式对任意实数恒成立,∴令,∵,∴设,,当时,取得最小值,即∴,即故的取值范围为20、(1),,;(2),.【解析】(1)由可得出,结合可求得的值,由结合可求得的值,可得出函数的解析式,再由以及可求得的值;(2)利用三角恒等变换思想化简函数的解析式为,由可求得的取值范围,结合正弦函数的基本性质可求得函数在区间上的最大值和最小值.【详解】(1)由题图得,,,,又,,得,,又,得,.又,且,,,得,综上所述:,,;(2),,,所以当时,;当时,【点睛】本题考查利用图象求正弦型函数解析式中的参数,同时也考查了正弦型函数在区间上最值的计算,考查计算能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职数控技术应用(加工精度检测)试题及答案
- 2025年高职第一学年(隐形正畸牙模制作)工艺技术阶段测试题及答案
- 2025年大学二年级(金融数学)数学应用综合测试题及答案
- 2026年工业软件互联互通中间件项目公司成立分析报告
- 多模态数据驱动的慢病预测模型
- 2025年大学二年级(应用统计学)统计软件应用试题及答案
- 2025年大学戏剧影视导演(影视导演基础)试题及答案
- 2025年大学海洋科学(海洋物理)试题及答案
- 2025年大学大四(交通工程设计)设计方案毕业测试试题及答案
- 2025年中职(计算机网络技术)网络布线基础试题及答案
- 完整版老旧小区改造工程施工组织设计方案
- 全球隐球菌病指南(2024版):诊断与管理课件
- 市场营销策划实践实习报告范例
- 山西省2026届高三第一次八省联考地理(T8联考)(含答案)
- 2026年中央广播电视总台招聘124人备考笔试题库及答案解析
- 四川水利安全b证考试试题及答案
- 2626《药事管理与法规》国家开放大学期末考试题库
- 合资船舶合同范本
- 2025年云南昆明巫家坝建设发展有限责任公司及下属公司第四季度社会招聘31人笔试参考题库附带答案详解(3卷)
- 2026年湖南化工职业技术学院单招职业技能考试题库含答案详解
- 食材配送公司管理制度(3篇)
评论
0/150
提交评论