2026届贵州省正安县第八中学高一数学第一学期期末预测试题含解析_第1页
2026届贵州省正安县第八中学高一数学第一学期期末预测试题含解析_第2页
2026届贵州省正安县第八中学高一数学第一学期期末预测试题含解析_第3页
2026届贵州省正安县第八中学高一数学第一学期期末预测试题含解析_第4页
2026届贵州省正安县第八中学高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届贵州省正安县第八中学高一数学第一学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数(且)图像经过定点A,且点A在角的终边上,则()A. B.C.7 D.2.以,为基底表示为A. B.C. D.3.如图,四棱锥的底面为正方形,底面,则下列结论中不正确的是A.B.平面C.平面平面D.与所成的角等于与所成的角4.对于函数,,“”是“的图象既关于原点对称又关于轴对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是()A. B.C. D.6.已知,,,则A. B.C. D.7.设a,b均为实数,则“a>b”是“a3A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.将函数的图象先向右平移个单位长度,再向下平移1个单位长度,所得图象对应的函数解析式是()A. B.C. D.9.如图,已知的直观图是一个直角边长是1的等腰直角三角形,那么的面积是A. B.C.1 D.10.函数的零点所在的区间是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则_________12.已知,函数,若,则______,此时的最小值是______.13.已知函数,若a、b、c互不相等,且,则abc的取值范围是______14.已知直线与直线的倾斜角分别为和,则直线与的交点坐标为__________15.若函数在区间上没有最值,则的取值范围是______.16.已知是第四象限角,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知扇形的圆心角是,半径为,弧长为.(1)若,,求扇形的弧长;(2)若扇形的周长为,当扇形的圆心角为多少弧度时,这个扇形的面积最大,并求出此时扇形面积的最大值.18.已知的顶点、、,试求:(1)求边的中线所在直线方程;(2)求边上的高所在直线的方程.19.在三棱锥中,和是边长为等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.20.如图,四棱锥中,底面是正方形,平面,,为与的交点,为棱上一点.(1)证明:平面平面;(2)若平面,求三棱锥的体积.21.已知函数的部分图象如图所示.(1)求函数的解析式;(2)求方程在区间内的所有实数根之和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】令指数为零,即可求出函数过定点,再根据三角函数的定义求出,最后根据同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:令解得,所以,故函数(且)过定点,所以由三角函数定义得,所以,故选:B2、B【解析】设,利用向量相等可构造方程组,解方程组求得结果.【详解】设则本题正确选项:【点睛】本题考查平面向量基本定理的应用,关键是能够通过向量相等构造出方程组,属于基础题.3、D【解析】结合直线与平面垂直判定和性质,结合直线与平面平行的判定,即可【详解】A选项,可知可知,故,正确;B选项,AB平行CD,故正确;C选项,,故平面平面,正确;D选项,AB与SC所成的角为,而DC与SA所成的角为,故错误,故选D【点睛】考查了直线与平面垂直的判定和性质,考查了直线与平面平行的判定,考查了异面直线所成角,难度中等4、C【解析】由函数奇偶性的定义求出的解析式,可得出结论.【详解】若函数的定义域为,的图象既关于原点对称又关于轴对称,则,可得,因此,“”是“的图象既关于原点对称又关于轴对称”的充要条件故选:C.5、C【解析】根据三角函数的奇偶性,即可得出φ的值【详解】函数f(x)=sin(2x+φ)为R上的偶函数,则φ=+kπ,k∈Z;所以φ的值可以是.故选C.【点睛】本题考查了三角函数的图象与性质的应用问题,属于基础题6、D【解析】容易看出,,从而可得出a,b,c的大小关系.【详解】,,;.故选D.【点睛】考查指数函数和对数函数的单调性,以及增函数和减函数的定义,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.7、C【解析】因为a3-b3=(a-b)(a28、A【解析】利用三角函数的伸缩平移变换规律求解变换后的解析式,再根据二倍角公式化简.【详解】将函数的图象先向右平移个单位长度,得函数解析式为,再将函数向下平移1个单位长度,得函数解析式为.故选:A9、D【解析】根据斜二测画法的基本原理,将平面直观图与还原为原几何图形,利用三角形面积公式可得结果.【详解】平面直观图与其原图形如图,直观图是直角边长为的等腰直角三角形,还原回原图形后,边还原为长度不变,仍为,直观图中的在原图形中还原为长度,且长度为,所以原图形的面积为,故选D.【点睛】本题主要考查直观图还原几何图形,属于简单题.利用斜二测画法作直观图,主要注意两点:一是与轴平行的线段仍然与与轴平行且相等;二是与轴平行的线段仍然与轴平行且长度减半.10、B【解析】∵,,,,∴函数的零点所在区间是故选B点睛:函数零点问题,常根据零点存在性定理来判断,如果函数在区间上的图象是连续不断的一条曲线,且有,那么,函数在区间内有零点,即存在使得

这个也就是方程的根.由此可判断根所在区间.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求得,然后求得.【详解】,.故答案为:12、①.②.【解析】直接将代入解析式即可求的值,进而可得的解析式,再分段求最小值即可求解.【详解】因为,所以,所以,当时,对称轴为,开口向上,此时在单调递增,,当时,,此时时,最小值,所以最小值为,故答案为:;.13、【解析】画出函数的图象,根据互不相等,且,我们令,我们易根据对数的运算性质,及c的取值范围得到abc的取值范围,即可求解【详解】由函数函数,可得函数的图象,如图所示:若a,b,c互不相等,且,令,则,,故,故答案为【点睛】本题主要考查了对数函数图象与性质的综合应用,其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于中档试题14、【解析】因为直线与直线的倾斜角分别为和,所以,联立与可得,,直线与的交点坐标为,故答案为.15、【解析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.【详解】函数,由正弦函数的图像与性质可知,当取得最值时满足,解得,由题意可知,在区间上没有最值,则,,所以或,因为,解得或,当时,代入可得或,当时,代入可得或,当时,代入可得或,此时无解.综上可得或,即的取值范围为.故答案为:.【点睛】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.16、【解析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【详解】因为是第四象限角,,则,所以,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当时,扇形面积最大值.【解析】(1)利用扇形弧长公式直接求解即可;(2)根据扇形周长可得,代入扇形面积公式,由二次函数最值可确定结果.【小问1详解】,扇形的弧长;【小问2详解】扇形的周长,,扇形面积,则当,,即当时,扇形面积最大值.18、(1);(2).【解析】(1)求出线段的中点坐标,利用两点式方程求出边上的中线所在的直线方程;(2)求出边所在直线的斜率,进而可以求出边上的高所在直线的斜率,利用点斜式求边上的高所在的直线方程【详解】解:(1)线段的中点坐标为所以边上的中线所在直线的方程是:,即;(2)由已知,则边上高的斜率是,边上的高所在直线方程是,即【点睛】本题考查直线的点斜式,两点式求直线的方程,属于基础题19、(1)见解析(2)见解析(3).【解析】由三角形中位线定理,得出,结合线面平行的判定定理,可得平面PAC;等腰和等腰中,证出,而,由勾股定理的逆定理,得,结合,可得平面ABC;由易知PO是三棱锥的高,算出等腰的面积,再结合锥体体积公式,可得三棱锥的体积【详解】,D分别为AB,PB的中点,又平面PAC,平面PAC平面如图,连接OC,O为AB中点,,,且同理,,又,,得、平面ABC,,平面平面ABC,D为PB的中点,结合,得棱锥的高为,体积为【点睛】本题给出特殊三棱锥,求证线面平行、线面垂直并求锥体体积,考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题20、(1)见解析(2)【解析】(1)由,可推出平面,从而可证明平面平面;(2)由平面可推出是中点,因此.【详解】(1)平面,平面,,∵四边形是正方形,,,平面,平面,∴平面平面;(2)平面,平面平面,,是中点,是中点,.【点睛】本题考查面面垂直,考查空间几何体体积的求法,属于中档题.在解决此类几何体体积问题时,可利用中点进行转化.21、(1)(2)【解析】(1)由图像得,并求解出周期为,从而得,再代入最大值,利用整体法,从而求解得,可得解析式为;(2)作出函数与的图像,可得两个函数在有四个交点,从而得有四个实数根,再利用三角函数的对称性计算得实数根之和.【小问1详解】由图可知,,∴∴,又点在的图象上∴,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论