2026届广东省广州市岭南中学数学高一上期末学业质量监测试题含解析_第1页
2026届广东省广州市岭南中学数学高一上期末学业质量监测试题含解析_第2页
2026届广东省广州市岭南中学数学高一上期末学业质量监测试题含解析_第3页
2026届广东省广州市岭南中学数学高一上期末学业质量监测试题含解析_第4页
2026届广东省广州市岭南中学数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省广州市岭南中学数学高一上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设a=,b=,c=,则a,b,c的大小关系是()A. B.C. D.2.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.3.为了得到函数的图像,只需把函数的图像上()A.各点的横坐标缩短到原来的倍,再向左平移个单位B.各点的横坐标缩短到原来的倍,再向左平移个单位C.各点的横坐标缩短到原来的2倍,再向左平移个单位D.各点的横坐标缩短到原来的2倍,再向左平移个单位4.若,则A. B.C. D.5.在下列图象中,函数的图象可能是A. B.C. D.6.已知,则的值等于()A. B.C. D.7.函数的大致图象是A. B.C. D.8.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.9.下列函数中,值域是的是A. B.C. D.10.土地沙漠化的治理,对中国乃至世界来说都是一个难题,我国创造了治沙成功案例——毛乌素沙漠.某沙漠经过一段时间的治理,已有1000公顷植被,假设每年植被面积以20%的增长率呈指数增长,按这种规律发展下去,则植被面积达到4000公顷至少需要经过的年数为()(参考数据:取)A.6 B.7C.8 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.设,则________.12.已知函数在一个周期内的图象如图所示,图中,,则___________.13.已知函数,若,则___________.14.函数的定义域为_____________________15.已知函数则_______.16.函数的最大值是,则实数的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知且,,求证:方程在区间上有实数根.18.已知二次函数.(1)若在的最大值为5,求的值;(2)当时,若对任意实数,总存在,使得.求的取值范围.19.已知集合(1)当时,求;(2)若“”是“”充分条件,求实数a的取值范围20.设,且.(1)求的值;(2)求在区间上的最大值.21.已知函数.(1)判断函数的奇偶性,并进行证明;(2)若实数满足,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据指数和幂函数的单调性比较大小即可.【详解】因为在上单调递增,在上单调递减所以,故.故选:C2、A【解析】根据函数的奇偶性和周期性进行求解即可.【详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A3、B【解析】各点的横坐标缩短到原来的倍,变为,再向左平移个单位,得到.4、D【解析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为,把已知条件代入运算,求得结果.【详解】,,故选D.【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.5、C【解析】根据函数的概念,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数,即可判定.【详解】由函数的概念可知,任意一个自变量的值对应的因变量的值是唯一的,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数是0或1,显然A、B、D均不满足函数的概念,只有选项C满足.故选:C.【点睛】本题主要考查了函数概念,以及函数的图象及函数的表示,其中解答中正确理解函数的基本概念是解答的关键,着重考查了数形结合思想的应用.6、B【解析】由分段函数的定义计算【详解】,,所以故选:B7、D【解析】关于对称,且时,,故选D8、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B9、D【解析】分别求出各函数的值域,即可得到答案.【详解】选项中可等于零;选项中显然大于1;选项中,,值域不是;选项中,故.故选D.【点睛】本题考查函数的性质以及值域的求法.属基础题.10、C【解析】根据题意列出不等式,利用对数换底公式,计算出结果.【详解】经过年后,植被面积为公顷,由,得.因为,所以,又因为,故植被面积达到4000公顷至少需要经过的年数为8.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:212、【解析】根据图象和已知信息求出的解析式,代值计算可得的值.【详解】由已知可得,在处附近单调递增,且,故,又因为点是函数在轴右侧的第一个对称中心,所以,,可得,故,因此,.故答案为:.13、0【解析】由,即可求出结果.【详解】由知,则,又因为,所以.故答案:0.14、【解析】,区间为.考点:函数的定义域15、【解析】根据分段函数解析式,由内而外,逐步计算,即可得出结果.【详解】∵,,则∴.故答案为:.16、[-1,0]【解析】函数,当时,函数有最大值,又因为,所以,故实数的取值范围是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、⑴见解析;⑵;⑶见解析.【解析】(1)利用判别式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3)方程在区间上有实数根,即有零点,结合零点存在定理可以证明.试题解析:⑴,当时,,函数有一个零点;当时,,函数有两个零点⑵已知,则对于恒成立,即恒成立;所以,从而解得.⑶设,则,在区间上有实数根,即方程在区间上有实数根.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解18、(1)2;(2).【解析】(1)时,;当时,根据单调性可得答案;(2)依题意得,当、时,利用的单调性可得答案;当和时,结合图象和单调性可得答案.【详解】(1)当时,,因为,故,;当时,对称轴,在上单调递减,所以,不合题意,舍去,综上可得:.(2)依题意得:,即,.①当时,对恒成立,所以,即;②当时,对恒成立,所以,即;③当时,对恒成立,所以,即;④当时,对恒成立,所以,即;综上所述,的取值范围为.【点睛】本题考查了二次函数恒成立的问题,所谓“动轴定区间法”,轴动区间定:比较对称轴与区间端点的位置关系,根据函数的单调性数形结合判断取得最值的点,需要分类讨论.19、(1);(2)或.【解析】(1)解一元二次不等式化简集合B,把代入,利用补集、交集的定义直接计算作答.(2)由给定条件可得,再借助集合的包含关系列式计算作答.【小问1详解】当时,,解不等式得:或,则或,有,所以.【小问2详解】由(1)知,或,因“”是“”的充分条件,则,显然,,因此,或,解得或,所以实数a取值范围是或.20、(1);(2)2【解析】(1)直接由求得的值;(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域【详解】解:(1)∵,∴,∴;(2)由得,∴函数的定义域为,,∴当时,是增函数;当时,是减函数,∴函数在上的最大值是【点睛】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论