版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆吐鲁番市高昌区第二中学2026届数学高二上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若倾斜角为的直线过,两点,则实数()A. B.C. D.2.已知随机变量服从正态分布,若,则()A.0.2 B.0.24C.0.28 D.0.323.当时,不等式恒成立,则实数的取值范围为()A. B.C. D.4.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.5.设函数在上可导,则等于()A. B.C. D.以上都不对6.某公司有320名员工,将这些员工编号为1,2,3,…,320,从这些员工中使用系统抽样的方法抽取20人进行“学习强国”的问卷调查,若54号被抽到,则下面被抽到的是()A.72号 B.150号C.256号 D.300号7.过抛物线的焦点F的直线l与抛物线交于PQ两点,若以线段PQ为直径的圆与直线相切,则()A.8 B.7C.6 D.58.设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为()A. B.C. D.9.设为坐标原点,抛物线的焦点为,为抛物线上一点.若,则的面积为()A. B.C. D.10.执行如图所示的程序框图,若输出的,则输人的()A. B.或C. D.或11.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A. B.C. D.12.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和二、填空题:本题共4小题,每小题5分,共20分。13.已知春季里,甲地每天下雨的概率为,乙地每天下雨的概率大于0,且甲、乙两地下雨相互独立,则春季的一天里,已知乙地下雨的条件下,甲地也下雨的概率为___________.14.若直线与圆有公共点,则b的取值范围是_____15.已知空间向量,,,若,,共面,则实数___________.16.已知数列的通项公式,则数列的前5项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)四棱锥,底面为矩形,面,且,点在线段上,且面.(1)求线段的长;(2)对于(1)中的,求直线与面所成角的正弦值.18.(12分)已知椭圆的中心在原点,焦点为,,且长轴长为4.(1)求椭圆的方程;(2)直线与椭圆相交于A,两点,求弦长.19.(12分)如图,四棱锥,,,,为等边三角形,平面平面ABCD,Q为PB中点(1)求证:平面平面PBC;(2)求平面PBC与平面PAD所成二面角的正弦值20.(12分)一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速(转/秒)1615129每小时生产有缺陷的零件数(件)10985通过观察散点图,发现与有线性相关关系:(1)求关于的回归直线方程;(2)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?(参考:回归直线方程为,其中,)21.(12分)在①,;②,,③,这三个条件中任选一个,补充在下面问题中并解决问题问题:设等差数列的前项和为,________________,若,判断是否存在最大值,若存在,求出取最大值时的值;若不存在,说明理由注:如果选择多个条件分别解答.按第一个解答记分22.(10分)已知函数,是的一个极值点.(1)求b的值;(2)当时,求函数的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线的倾斜角和斜率的关系得到直线的斜率为,再根据两点的斜率公式计算可得;【详解】解:因为直线的倾斜角为,所以直线的斜率为,所以,解得;故选:C2、C【解析】依据正态曲线的对称性即可求得【详解】由随机变量服从正态分布,可知正态曲线的对称轴为直线由,可得则,故故选:C3、A【解析】设,对实数的取值进行分类讨论,求得,解不等式,综合可得出实数的取值范围.【详解】设,其中.①当时,即当时,函数在区间上单调递增,则,解得,此时不存在;②当时,,解得;③当时,即当时,函数在区间上单调递减,则,解得,此时不存在.综上所述,实数的取值范围是.故选:A.4、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.5、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C6、B【解析】根据系统抽样分成20个小组,每组16人中抽一人,故抽到的序号相差16的整数倍,即可求解.【详解】∵用系统抽样的方法从320名员工中抽取一个容量为20的样本∴,即每隔16人抽取一人∵54号被抽到∴下面被抽到的是54+16×6=150号,而其他选项中的数字不满足与54相差16的整数倍,故答案为:B故选:B7、C【解析】依据抛物线定义可以证明:以过抛物线焦点F的弦PQ为直径的圆与其准线相切,则可以顺利求得线段的长.【详解】抛物线的焦点F,准线取PQ中点H,分别过P、Q、H作抛物线准线的垂线,垂足分别为N、M、E则四边形为直角梯形,为梯形中位线,由抛物线定义可知,,,则故,即点H到抛物线准线的距离为的一半,则以线段PQ为直径的圆与抛物线的准线相切.又以线段PQ为直径的圆与直线相切,则以线段PQ为直径的圆的直径等于直线与直线间的距离.即故选:C8、D【解析】由抛物线的焦点可求得直线的方程为,即得直线的斜率为,再根据双曲线的渐近线的方程为,可得,即可求出,得到双曲线的方程【详解】由题可知,抛物线焦点为,所以直线的方程为,即直线的斜率为,又双曲线的渐近线的方程为,所以,,因为,解得故选:【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题9、D【解析】先由抛物线方程求出点的坐标,准线方程为,再由可求得点的横坐标为4,从而可求出点的纵坐标,进而可求出的面积【详解】由题意可得点的坐标,准线方程为,因为为抛物线上一点,,所以点的横坐标为4,当时,,所以,所以的面积为,故选:D10、A【解析】根据题意可知该程序框图显示的算法函数为,分和两种情况讨论即可得解.【详解】解:该程序框图显示得算法函数为,由,当时,,方程无解;当时,,解得,综上,若输出的,则输入的.故选:A.11、B【解析】此点取自该圆内接正六边形的概率是正六边形面积除以圆的面积,分别求出即可.【详解】如图,在单位圆中作其内接正六边形,该正六边形是六个边长等于半径的正三角形,其面积,圆的面积为则所求概率.故选:B【点睛】此题考查几何概率模型求解,关键在于准确求出正六边形的面积和圆的面积.12、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##0.5【解析】根据条件概率求概率的方法即可求得答案.【详解】设A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率为p,则,因为甲乙两地下雨相互独立,所以,于是在乙地下雨的条件下,甲地也下雨的概率为.故答案为:.14、【解析】直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数取值范围是.故答案为:15、1【解析】根据向量共面,可设,先求解出的值,则的值可求.【详解】因为,,共面且,不共线,所以可设,所以,所以,所以,所以,故答案为:1.16、【解析】根据数列的通项公式可得答案.【详解】因为,所以数列的前5项为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解析】(1)根据线面垂直得到,再由相似比得方程可求解;(2)建立空间直角坐标系,求平面的法向量,运用夹角公式先求线面角的余弦值,再转化为正弦值即可.小问1详解】面,在矩形中,易得:;【小问2详解】如四建立空间直角坐标系:则,,由题意可知:为平面的一个法向量,,,直线与面所成角的正弦值为.18、(1)(2)【解析】(1)由已知直接可得;(2)联立方程组求出A,两点坐标,再由两点间距离公式可得.【小问1详解】∵椭圆的中心在原点,焦点为,且长轴长为4,,,,故椭圆的方程为;【小问2详解】设,联立解得和,,∴弦长.19、(1)证明见解析(2)【解析】(1)取的中点为,连接,可证,从而可利用面面垂直的判定定理可证平面平面.(2)建立如图所示的空间直角坐标系,求出平面的法向量、平面的法向量后可得二面角的正弦值.【小问1详解】如图,取的中点为S,连接,因为为等边三角形,故,,而平面平面ABCD,平面平面,平面,故平面,而平面,故,而,故,因,故平面,因平面,故,因,故平面,而平面,故平面平面.【小问2详解】连接,因为,故四边形为平行四边形,而,故四边形为矩形,所以,由(1)可得平面,故建立如图所示的空间直角坐标系,则所以,,设平面的法向量为,则即,取,则,设平面的法向量为,则即,取,则,故,故平面PBC与平面PAD所成二面角的正弦值为.20、(1);(2)控制在16转/秒内.【解析】(1)结合已知数据,代入公式中,先求出,然后求出,进而可求出,从而可得回归方程.(2)由题意得,即可求出转速的最高速度.【详解】解:(1)由题意知,,所以,则,即关于的回归直线方程为.(2)由可得,解得,所以机器的运转速度应控制在16转/秒内.21、答案不唯一,具体见解析【解析】选①:易得,法一:令求n,即可为何值时取最大值;法二:写出,利用等差数列前n项和的函数性质判断为何值时有最大值;选②:由数列前n项和及等差数列下标和的性质易得、即可确定有最大值时值;选③:由等差数列前n项和公式易得、即可确定有最大值时值;【详解】选①:设数列的公差为,,,解得,即,法一:当时,有,得,∴当时,;,;时,,∴或时,取最大值法二:,对称轴,∴或时,取最大值选②:由,得,由等差中项的性质有,即,由,得,∴,故,∴当时,,时,,故时,取最大值选③:由,得,可得,由,得,可得,∴,故,∴当时,,时,,故时,取最大值【点睛】关键点点睛:根据所选的条件,结合等差数列前n项和公式的性质、下标和相等的性质等确定数列中项的正负性,找到界点n值即可.22、(1);(2)【解析】(1)先求出导函数,再根据x=2是的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026贵州峰鑫建设投资(集团)有限公司招聘14人考试备考题库及答案解析
- 2026江苏南京大学招聘XZ2026-005商学院保洁员考试参考题库及答案解析
- 2026中国农业科学院农产品加工研究所食物营养与功能性食品创新团队招聘合同制科研助理考试参考试题及答案解析
- 2026江苏南京大学SZYJ20260004能源与资源学院博士后招聘1人考试参考题库及答案解析
- 2026江苏南京市东南大学网络空间安全学院劳务派遣岗位招聘1人考试参考试题及答案解析
- 2026河北衡水桃城区公开招聘医疗卫生岗位劳务派遣制工作人员5名考试备考试题及答案解析
- 2026湖北省面向西北农林科技大学普通选调生招录考试备考题库及答案解析
- 2026辽宁科技学院面向部分高校招聘5人考试参考试题及答案解析
- 2026福建福州工业园区开发集团有限公司设计勘察分公司招聘1人考试参考题库及答案解析
- 2026广东中山市公安局黄圃分局招聘警务辅助人员8人考试参考题库及答案解析
- 2025-2026学年四年级英语上册期末试题卷(含听力音频)
- 2026届川庆钻探工程限公司高校毕业生春季招聘10人易考易错模拟试题(共500题)试卷后附参考答案
- 医疗器械法规考试题及答案解析
- 2025年河南体育学院马克思主义基本原理概论期末考试笔试题库
- 2026年广西出版传媒集团有限公司招聘(98人)考试参考题库及答案解析
- 2026年中国铁路上海局集团有限公司招聘普通高校毕业生1236人备考题库及答案详解1套
- 2026年上海市普陀区社区工作者公开招聘备考题库附答案
- 医源性早发性卵巢功能不全临床治疗与管理指南(2025版)
- 甘肃省平凉市(2025年)辅警协警笔试笔试真题(附答案)
- 中国双相障碍防治指南(2025版)
- 移动式工程机械监理实施细则
评论
0/150
提交评论