2026届新疆沙雅县二中数学高二上期末监测试题含解析_第1页
2026届新疆沙雅县二中数学高二上期末监测试题含解析_第2页
2026届新疆沙雅县二中数学高二上期末监测试题含解析_第3页
2026届新疆沙雅县二中数学高二上期末监测试题含解析_第4页
2026届新疆沙雅县二中数学高二上期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届新疆沙雅县二中数学高二上期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知各项都为正数的等比数列,其公比为q,前n项和为,满足,且是与的等差中项,则下列选项正确的是()A. B.C D.2.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.3.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列4.已知是两条不同的直线,是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件5.若抛物线的焦点与椭圆的下焦点重合,则m的值为()A.4 B.2C. D.6.已知函数,则等于()A.0 B.2C. D.7.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ值为()A.-3或7 B.-2或8C0或10 D.1或118.已知,是双曲线C:(,)的两个焦点,过点与x轴垂直的直线与双曲线C交于A、B两点,若是等腰直角三角形,则双曲线C的离心率为()A. B.C. D.9.高二某班共有60名学生,其中女生有20名,“三好学生”人数是全班人数的,且“三好学生”中女生占一半.现从该班学生中任选1人参加座谈会,则在已知没有选上女生的条件下,选上的学生是“三好学生”的概率为()A. B.C. D.10.若倾斜角为的直线过,两点,则实数()A. B.C. D.11.在复平面内,复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.已知集合,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线上一点P到的距离最小值为___________.14.不大于100的正整数中,被3除余1的所有数的和是___________15.某公司青年、中年、老年员工的人数之比为10∶8∶7,从中抽取100名作为样本,若每人被抽中的概率是0.2,则该公司青年员工的人数为__________16.已知函数,,则曲线在处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的首项,,,.(1)证明:为等比数列;(2)求数列的前项和18.(12分)如图,点分别在射线,上运动,且(1)求;(2)求线段的中点M的轨迹C的方程;(3)直线与,轨迹C及自上而下依次交于D,E,F,G四点,求证:19.(12分)在中,内角A、B、C的对边分别为a、b、c,满足(1)求A的大小;(2)若,的面积为,求的周长20.(12分)有两位射击运动员在一次射击测试中各射靶7次,每次命中的环数如下:甲6978856乙a398964经计算可得甲、乙两名射击运动员的平均成绩是一样的(1)求实数a的值;(2)请通过计算,判断甲、乙两名射击运动员哪一位的成绩更稳定?21.(12分)已知数列,若_________________(1)求数列的通项公式;(2)求数列的前项和从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解①;②,,;③,点,在斜率是2的直线上22.(10分)已知椭圆的离心率为,直线与椭圆C相切于点(1)求椭圆C方程;(2)已知直线与椭圆C交于不同的两点M,N,与直线交于点Q(P,Q,M,N均不重合),记的斜率分别为,若①求△面积的范围,②证明:为定值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意求得,即可判断AB,再根据等比数列的通项公式即可判断C;再根据等比数列前项和公式即可判断D.【详解】解:因为各项都为正数的等比数列,,所以,又因是与的等差中项,所以,即,解得或(舍去),故B错误;所以,故A错误;所以,故C错误;所以,故D正确.故选:D.2、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.3、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.4、B【解析】根据垂直关系的性质可判断.【详解】由题,,则或,若,则或或与相交,故充分性不成立;若,则必有,故必要性成立,所以“”是“”的必要不充分条件.故选:B.5、D【解析】求出椭圆的下焦点,即抛物线的焦点,即可得解.【详解】解:椭圆的下焦点为,即为抛物线焦点,∴,∴.故选:D.6、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.7、A【解析】根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系8、B【解析】根据等腰直角三角形的性质,结合双曲线的离心率公式进行求解即可.【详解】由题意不妨设,,当时,由,不妨设,因为是等腰直角三角形,所以有,或舍去,故选:B9、C【解析】设事件表示“选上的学生是男生”,事件表示“选上的学生是三好学生,求出和,利用条件概率公式计算即可求解.【详解】设事件表示“选上的学生是男生”,事件表示“选上的学生是‘三好学生’”,则所求概率为.由题意可得:男生有人,“三好学生”有人,所以“三好学生”中男生有人,所以,,故.故选:C.10、C【解析】根据直线的倾斜角和斜率的关系得到直线的斜率为,再根据两点的斜率公式计算可得;【详解】解:因为直线的倾斜角为,所以直线的斜率为,所以,解得;故选:C11、D【解析】根据复数在复平面内的坐标表示可得答案.【详解】解:由题意得:在复平面上对应的点为,该点在第四象限.故选:D12、A【解析】由已知得,因为,所以,故选A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】设出点P的坐标,利用两点间距离公式结合二次函数求出最小值即可作答.【详解】设,则,即,于是得,而,则当时,,所以双曲线上一点P到的距离最小值为2.故答案为:214、1717【解析】利用等差数列的前项和公式可求所有数的和.【详解】100以内的正整数中,被3除余1由小到大构成等差数列,其首项为1,公差为3,共有项,它们的和为,故答案为:.15、200【解析】先根据分层抽样的方法计算出该单位青年职工应抽取的人数,进而算出青年职工的总人数.【详解】由题意,从中抽取100名员工作为样本,需要从该单位青年职工中抽取(人).因为每人被抽中的概率是0.2,所以青年职工共有(人).故答案:200.16、【解析】根据导数的几何意义求得在点处的切线方程.【详解】由,求导,知,又,则函数在点处的切线方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用等比数列的定义即可证明.(2)利用错位相减法即可求解.【小问1详解】当时,,所以:数列是公比为3的等比数列;【小问2详解】由(1)知,数列是以3为首项,以3为公比的等比数列,所以:,所以:,,所以,①所以,②①②可得.18、(1)2(2)(3)证明见详解【解析】(1)用两点间的距离公式和三角形的面积公式,结合已知直接可解;(2)根据中点坐标公式,结合(1)中结论可得;(3)要证,只需证和的中点重合,直接或利用韦达定理求出中点横坐标,证明其相等即可.【小问1详解】记直线的倾斜角为,则,易得所以因为,所以,整理得:【小问2详解】设点M的坐标为,则即,由(1)知,所以,即【小问3详解】要证,只需证和的中点重合,记D,E,F,G的横坐标分别为,易知直线的斜率(当时与渐近线平行或重合,此时与双曲线最多一个交点)则解方程组,得解方程组,得将代入,得所以因为所以所以和的中点的横坐标相等,所以和的中点重合,记其中点为N,则有,即19、(1)(2)【解析】(1)通过正弦定理将边化为角的关系,可得,进而可得结果;(2)由面积公式得,结合余弦定理得,进而得结果.【小问1详解】∵∴由正弦定理,得∴∵,∴,故【小问2详解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周长为20、(1)10;(2)甲的成绩比乙更稳定.【解析】(1)根据甲乙成绩求他们的平均成绩,由平均成绩相等列方程求参数a的值.(2)由已知数据及(1)的结果,求甲乙的方差并比较大小,即可知哪位运动员成绩更稳定.【小问1详解】由题意,甲的平均成绩为,乙的平均成绩为,又甲、乙两名射击运动员的平均成绩是一样的,有,解得,故实数a为10;【小问2详解】甲的方差,乙的方差,由,知:甲的成绩比乙更稳定.21、答案见解析.【解析】(1)若选①,根据通项公式与前项和的关系求解通项公式即可;若选②,根据可得数列为等差数列,利用基本量法求解通项公式即可;若选③,根据两点间的斜率公式可得,可得数列为等差数列进而求得通项公式;(2)利用裂项相消求和即可【详解】解:(1)若选①,由,所以当,,两式相减可得:,而在中,令可得:,符合上式,故若选②,由(,)可得:数列为等差数列,又因为,,所以,即,所以若选③,由点,在斜率是2的直线上得:,即,所以数列为等差数列且(2)由(1)知:,所以22、(1);(2)①;②证明见解析.【解析】(1)根据椭圆离心率和椭圆经过的点建立方程组,求解方程组可得椭圆的方程;(2)先根据相切求出直线的斜率,结合可得,进而应用弦长公式、点线距离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论