新疆库尔勒市新疆兵团第二师华山中学2026届高二上数学期末学业水平测试模拟试题含解析_第1页
新疆库尔勒市新疆兵团第二师华山中学2026届高二上数学期末学业水平测试模拟试题含解析_第2页
新疆库尔勒市新疆兵团第二师华山中学2026届高二上数学期末学业水平测试模拟试题含解析_第3页
新疆库尔勒市新疆兵团第二师华山中学2026届高二上数学期末学业水平测试模拟试题含解析_第4页
新疆库尔勒市新疆兵团第二师华山中学2026届高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆库尔勒市新疆兵团第二师华山中学2026届高二上数学期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定2.如图,在直三棱柱中,D为棱的中点,,,,则异面直线CD与所成角的余弦值为()A. B.C. D.3.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A B.C. D.4.在等差数列中,已知,则数列的前9项和为()A. B.13C.45 D.1175.如图,是边长为4的等边三角形的中位线,将沿折起,使得点A与P重合,平面平面,则四棱锥外接球的表面积是()A. B.C. D.6.圆上到直线的距离为的点共有A.个 B.个C.个 D.个7.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.688.函数的图像在点处的切线方程为()A. B.C. D.9.已知点,和直线,若在坐标平面内存在一点P,使,且点P到直线l的距离为2,则点P的坐标为()A.或 B.或C.或 D.或10.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件11.设是区间上的连续函数,且在内可导,则下列结论中正确的是()A.的极值点一定是最值点B.的最值点一定是极值点C.在区间上可能没有极值点D.在区间上可能没有最值点12.为了解义务教育阶段学校对双减政策的落实程度,某市教育局从全市义务教育阶段学校中随机抽取了6所学校进行问卷调查,其中有4所小学和2所初级中学,若从这6所学校中再随机抽取两所学校作进一步调查,则抽取的这两所学校中恰有一所小学的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正数满足,则的最小值是__________.14.正四棱柱的高为底面边长的倍,则其体对角线与底面所成角的大小为_________.15.已知数列的通项公式为,,设是数列的前n项和,若对任意都成立,则实数的取值范围是__________.16.已知数列是等差数列,,公差,为其前n项和,满足,则当取得最大值时,______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆M:的离心率为,左顶点A到左焦点F的距离为1,椭圆M上一点B位于第一象限,点B与点C关于原点对称,直线CF与椭圆M的另一交点为D(1)求椭圆M的标准方程;(2)设直线AD的斜率为,直线AB的斜率为.求证:为定值18.(12分)已知抛物线的顶点为原点,焦点F在x轴的正半轴,F到直线的距离为.点为此抛物线上的一点,.直线l与抛物线交于异于N的两点A,B,且.(1)求抛物线方程和N点坐标;(2)求证:直线AB过定点,并求该定点坐标.19.(12分)已知数列是公差为2的等差数列,且满足,,成等比数列(1)求数列的通项公式;(2)求数列的前n项和20.(12分)已知是各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)数列通项公式为,求数列的前n项和.21.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0的交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程22.(10分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.2、A【解析】以C为坐标原点,分别以,,方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.运用异面直线的空间向量求解方法,可求得答案.【详解】解:以C为坐标原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.由已知可得,,,,则,,所以.又因为异面直线所成的角的范围为,所以异面直线与所成角的余弦值为.故选:A.3、D【解析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【详解】由导函数得图象可得:时,,所以在单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.4、C【解析】根据给定的条件利用等差数列的性质计算作答【详解】在等差数列中,因,所以.故选:C5、A【解析】分别取的中点,易得,则点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,设外接球的半径为,,利用勾股定理求得半径,从而可得出答案.【详解】解:分别取的中点,在等边三角形中,,是中位线,则都是等边三角形,所以,所以点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,由为的中点,所以,因为平面平面,且平面平面,平面,所以平面,则,设外接球半径为,,,则,,所以,解得,所以,所以四棱锥外接球的表面积是.故选:A.第II卷6、C【解析】求出圆的圆心和半径,比较圆心到直线的距离和圆的半径的关系即可得解.【详解】圆可变为,圆心为,半径为,圆心到直线的距离,圆上到直线的距离为的点共有个.故选:C.【点睛】本题考查了圆与直线的位置关系,考查了学生合理转化的能力,属于基础题.7、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.8、B【解析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题9、C【解析】设点的坐标为,根据,点到直线的距离为,联立方程组即可求解.【详解】解:设点的坐标为,线段的中点的坐标为,,∴的垂直平分线方程为,即,∵点在直线上,∴,又点到直线:的距离为,∴,即,联立可得、或、,∴所求点的坐标为或,故选:C10、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D11、C【解析】根据连续函数的极值和最值的关系即可判断【详解】根据函数的极值与最值的概念知,的极值点不一定是最值点,的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A,B,D都不正确,若函数在区间上单调,则函数在区间上没有极值点,所以C正确故选:C.【点睛】本题主要考查函数的极值与最值的概念辨析,属于容易题12、A【解析】由组合知识结合古典概型概率公式求解即可.【详解】从这6所学校中随机抽取两所学校的情况共有种,这两所学校中恰有一所小学的情况共有种,则其概率为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】利用“1”代换,结合基本不等式求解.【详解】因为,,所以,当且仅当,即时等号成立,所以当时,取得最小值8.故答案为:8.14、##【解析】如图所示,其体对角线与底面所成角为,解三角形即得解.【详解】解:如图所示,设,所以.由题得平面,则其体对角线与底面所成角为,因为,所以.故答案为:15、【解析】化简数列将问题转化为不等式恒成立问题,再对n分奇数和偶数进行讨论,分别求解出的取值范围,最后综合得出结果.【详解】根据题意,,.①当n是奇数时,,即对任意正奇数n恒成立,当时,有最小值1,所以.②当n是正偶数时,,即,又,故对任意正偶数n都成立,又随n增大而增大,当时,有最小值,即,综合①②可知.故答案为:.16、9或10【解析】等差数列通项公式的使用.【详解】数列是等差数列,且,得,得,则有,又因为,公差,所以或10时,取得最大值故答案为:9或10三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)根据椭圆离心率公式,结合椭圆的性质进行求解即可;(2)设出直线CF的方程与椭圆方程联立,根据斜率公式,结合一元二次方程根与系数关系进行求解即可.【小问1详解】(1),,∴,,,∴;【小问2详解】设,,则,CF:联立∴,∴【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.18、(1),(2)证明见解析,定点【解析】(1)设抛物线的标准方程为,利用点到直线距离公式可求出,再利用焦半径公式可求出N点坐标;(2)设直线的方程为,与抛物线联立,利用韦达定理计算,可得关系,然后代入直线方程可得定点.【小问1详解】设抛物线的标准方程为,,其焦点为则,∴所以抛物线的方程为.,所以,所以.因为,所以,所以.【小问2详解】由题意知,直线的斜率不为0,设直线的方程为(),联立方程得设两个交点,(,).所以所以,即整理得,此时恒成立,此时直线l的方程为,可化为,从而直线过定点.19、(1)(2)【解析】(1)由成等比数列得首项,从而得到通项公式;(2)利用裂项相消求和可得答案.【小问1详解】设数列的公差为,∵成等比数列,∴,即,∴,由题意故,得,即.【小问2详解】,∴20、(1);(2).【解析】(1)设的公比为,利用基本量运算求出公比,可得数列的通项公式;(2)利用错位相减法计算出数列的前n项和【详解】(1)设的公比为,由题意知:,.又,解得,,所以.(2).令,则,因此,又,两式相减得所以.【点睛】方法点睛:本题考查等比数列的通项公式,考查数列的求和,数列求和的方法总结如下:

公式法,利用等差数列和等比数列的求和公式进行计算即可;

裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;

错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;

倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和21、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.22、(1),;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论