版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市东洲区抚顺十中2026届高一上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果角的终边经过点,则()A. B.C. D.2.若偶函数在上单调递减,且,则不等式的解集是()A. B.C. D.3.若集合,,则A. B.C. D.4.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1:3,这截面把圆锥母线分成的两段的比是(
)A.1:3 B.1:()C.1:9 D.5.已知偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.6.已知扇形的半径为,面积为,则这个扇形的圆心角的弧度数为()A. B.C. D.7.如果“,”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.不充分也不必要条件8.设函数,点,,在的图像上,且.对于,下列说法正确的是()①一定是钝角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A①③ B.①④C.②③ D.②④9.方程的解所在的区间是A B.C. D.10.如图,在中,点是线段及、的延长线所围成的阴影区域内(含边界)的任意一点,且,则在直角坐标平面上,实数对所表示的区域在直线的右下侧部分的面积是()A. B.C. D.不能求二、填空题:本大题共6小题,每小题5分,共30分。11.______.12.若sinθ=,求的值_______13.已知点是角终边上一点,且,则的值为__________.14.函数的部分图象如图所示,则函数的解析式为________.15.圆关于直线的对称圆的标准方程为___________.16.已知函数f(x)=①f(5)=______;②函数f(x)与函数y=(三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的最小正周期和单调递减区间;(2)将函数的图像向左平移单位长度,再将所得图像上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图像,求在上的值域18.已知幂函数在上为增函数.(1)求实数的值;(2)求函数的值域.19.已知函数是定义在R上的奇函数,当时,(Ⅰ)求函数在R上的解析式;(Ⅱ)若,函数,是否存在实数m使得的最小值为,若存在,求m的值;若不存在,请说明理由20.是否存在锐角,使得:,同时成立?若存在,求出锐角的值;若不存在,说明理由.21.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由三角函数的定义可求得的值.【详解】由三角函数的定义可得.故选:D.【点睛】本题考查利用三角函数的定义求值,考查计算能力,属于基础题.2、A【解析】根据奇偶性,可得在上单调递增,且,根据的奇偶性及单调性,可得,根据一元二次不等式的解法,即可得答案.【详解】由题意得在上单调递增,且,因为,所以,解得,所以不等式的解集是.故选:A3、C【解析】因为集合,,所以A∩B=x故选C.4、B【解析】平行于底面的平面截圆锥可以得到一个小圆锥,利用它的底面与原圆锥的底面的面积之比得到相应的母线长之比,故可得截面分母线段长所成的两段长度之比.【详解】设截面圆的半径为,原圆锥的底面半径为,则,所以小圆锥与原圆锥的母线长之比为,故截面把圆锥母线段分成的两段比是.选B.【点睛】在平面几何中,如果两个三角形相似,那么它们的面积之比为相似比的平方,类似地,在立体几何中,平行于底面的平面截圆锥所得的小圆锥与原来的圆锥的底面积之比为,体积之比为(分别为小圆锥的底面半径和原圆锥的底面半径).5、B【解析】由题得函数在上单调递减,且,再根据函数的图象得到,解不等式即得解.【详解】因为偶函数在上单调递增,且,所以在上单调递减,且,因为,所以,所以.故选:B【点睛】本题主要考查函数的单调性和奇偶性的应用,意在考查学生对这些知识的理解掌握水平.6、A【解析】由扇形的面积公式即可求解.【详解】解:设扇形圆心角的弧度数为,则扇形面积为,解得,因为,所以扇形的圆心角的弧度数为4.故选:A7、A【解析】利用充分条件和必要条件的定义判断.【详解】当,时,,故充分;当时,,,故不必要,故选:A8、A【解析】结合,得到,所以一定为钝角三角形,可判定①正确,②错误;根据两点间的距离公式和函数的变化率的不同,得到,可判定③正确,④不正确.【详解】由题意,函数为单调递增函数,因为点,,在的图像上,且,不妨设,可得,则,因为,可得,又由因为,,,,所以,所以所以,所以一定为钝角三角形,所以①正确,②错误;由两点间的距离公式,可得,根据指数函数和一次函数的变化率,可得点到的变化率小于点到点的变化率不相同,所以,所以不可能为等腰三角形,所以③正确,④不正确.故选:A.9、C【解析】设,则由指数函数与一次函数的性质可知,函数与的上都是递增函数,所以在上单调递增,故函数最多有一个零点,而,,根据零点存在定理可知,有一个零点,且该零点处在区间内,故选答案C.考点:函数与方程.10、A【解析】由点是由线段及、的延长线所围成的阴影区域内(含边界)的任意一点,作的平行线,把中、所满足的不等式表示出来,然后作出不等式组所表示的可行域,并计算出可行域在直线的右下侧部分的面积即可.【详解】如下图,过作,交的延长线于,交的延长线于,设,,,,则,所以,得,所以.作出不等式组对应的可行域,如下图中阴影部分所示,故所求面积为,故选:A.【点睛】本题考查二元一次不等式组与平面区域的关系,考查转化思想,是难题.解决本题的关键是建立、的不等式组,将问题转化为线性规划问题求解.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】利用两角和的正切公式进行化简求值.【详解】由于,所以,即,所以故答案为:【点睛】本小题主要考查两角和的正切公式,属于中档题.12、6【解析】先通过诱导公式对原式进行化简,然后通分,进而通过同角三角函数的平方关系将原式转化为只含的式子,最后得到答案.【详解】原式=+,因为,所以.所以.故答案为:6.13、【解析】由三角函数定义可得,进而求解即可【详解】由题,,所以,故答案为:【点睛】本题考查由三角函数值求终边上的点,考查三角函数定义的应用14、【解析】根据三角函数的图象,求出函数的周期,进而求出和即可得到结论【详解】由图象得,,则周期,则,则,当时,,则,即即,即,,,当时,,则函数的解析式为,故答案为【点睛】本题主要考查三角函数解析式的求解,根据三角函数图象求出,和的值是解决本题的关键15、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题16、①.-14【解析】①根据函数解析式,代值求解即可;②在同一直角坐标系中画出两个函数的图象,即可数形结合求得结果.【详解】①由题可知:f5②根据f(x)的解析式,在同一坐标系下绘制f(x)与y=(数形结合可知,两个函数有3个交点.故答案为:-14;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,单调递减区间为,;(2).【解析】(1)利用二倍角正余弦公式及辅助角公式可得,再根据正弦型函数的性质求最小正周期和递减区间.(2)由(1)及图象平移有,应用整体法及正弦函数的性质求区间值域.【小问1详解】由题设,,所以的最小正周期为,令,,解得,,因此,函数的单调递减区间为,【小问2详解】由(1)知,,将函数的图象向左平移个单位长度,可得的图象,再将所得图象上各点的横坐标缩短为原来的,纵坐标不变,得到的图象,∵,则,∴,则∴在上的值域为18、(1);(2).【解析】(1)解方程再检验即得解;(2)令,再求函数的值域即得解.【小问1详解】解:由题得或.当时,在上为增函数,符合题意;当时,在上为减函数,不符合题意.综上所述.【小问2详解】解:由题得,令,抛物线的对称轴为,所以.所以函数的值域为.19、(Ⅰ);(Ⅱ)存在实数使得的最小值为【解析】Ⅰ根据奇函数的对称性进行转化求解即可Ⅱ求出的表达式,利用换元法转化为一元二次函数,通过讨论对称轴与区间的关系,判断最小值是否满足条件即可【详解】Ⅰ若,则,∵当时,且是奇函数,∴当时,,即当时,,则Ⅱ若,,设,∵,∴,则等价为,对称轴为,若,即时,在上为增函数,此时当时,最小,即,即成立,若,即时,在上为减函数,此时当时,最小,即,此时不成立,若,即时,在上不单调,此时当时,最小,即,此时在时是减函数,当时取得最小值为,即此时不满足条件综上只有当才满足条件即存在存在实数使得最小值为【点睛】本题主要考查函数奇偶性的应用,以及利用换元法转化为一元二次函数,结合一元二次函数单调性的性质是解决本题的关键,综合性较强,运算量较大,有一定的难度20、存在,【解析】利用两角和的正切公式可得,结合可求及,求出后可得的值.【详解】假设存在锐角使得,同时成立.得,所以.又因为,所以.因此可以看成是方程的两个根.解该方程得.若,则.这与为锐角矛盾.所以,故,因为为锐角,所以.所以满足条件的存在,且.【点睛】三角方程的求解的基本方法是消元法,也可以利用三角变换公式把三角方程化简为角的三角函数的方程,求出它们的值后可得角的大小,化简三角方程时要关注三角方程的结构形式便于找到合理的三角变换方法.21、(1)投
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年遵化市人民法院招录劳务派遣审判辅助人员备考题库及一套完整答案详解
- 2026年浙江省之江监狱招聘备考题库及参考答案详解1套
- 网络设备维护与故障诊断流程
- Zigbee技术的发展教学课件
- 入党初级考试试题及答案
- x技术教学课件
- 2026年汽车行业智能化创新报告与未来交通体系变革报告
- 2026年制式离婚协议书民政局备案版
- 2026年医疗3D打印器官修复报告
- 安全用药知识科普
- 器官移植术后排斥反应的风险分层管理
- 事业单位清算及财务报告编写范本
- 护坡绿化劳务合同范本
- 临床绩效的DRG与CMI双指标调控
- 2026年湛江日报社公开招聘事业编制工作人员备考题库及完整答案详解
- 2025-2026学年人教版数学三年级上学期期末仿真模拟试卷一(含答案)
- 2025年凉山教师业务素质测试题及答案
- 2026年昭通市威信县公安局第一季度辅警招聘(14人)笔试模拟试题及答案解析
- 氢能技术研发协议
- 2025交管12123学法减分整套试题带答案解析(全国适用)
- 经皮内镜下胃造瘘术护理配合
评论
0/150
提交评论