版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东历城二中高一上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则a,b,c的大小关系是A. B.C. D.2.函数的零点个数为(
)A.1 B.2C.3 D.43.已知表示不大于的最大整数,若函数在上仅有一个零点,则实数的取值范围为()A. B.C. D.4.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是A.①② B.②③C.③④ D.②④5.已知为三角形内角,且,若,则关于的形状的判断,正确的是A.直角三角形 B.锐角三角形C.钝角三角形 D.三种形状都有可能6.已知全集,集合,,则()A. B.C. D.7.下列函数在定义域内为奇函数,且有最小值的是A. B.C. D.8.某几何体的三视图如图所示(单位:cm),则该几何体的表面积为()A. B.C. D.9.在半径为cm的圆上,一扇形所对的圆心角为,则此扇形的面积为()A. B.C. D.10.下列四个函数中,在整个定义域内单调递减是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若方程有4个不同的实数根,则的取值范围是____12.化简求值(1)化简(2)已知:,求值13.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是________.14.若不等式的解集为,则______,______15.已知,,且,则的最小值为___________.16.不等式的解集是_____________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.回答下列各题(1)求值:(2)解关于的不等式:(其中)18.函数y=cosx+sinx的最小正周期、最大值、最小值.19.在新型冠状病毒感染的肺炎治疗过程中,需要某医药公司生产的某种药品.此药品的年固定成本为200万元,每生产x千件需另投入成本,当年产量不足60千件时,(万元),当年产量不小于60千件时,(万元).每千件商品售价为50万元,在疫情期间,该公司生产的药品能全部售完(1)写出利润(万元)关于年产量x(千件)的函数解析式;(2)该公司决定将此药品所获利润的10%用来捐赠防疫物资,当年产量为多少千件时,在这一药品的生产中所获利润最大?此时可捐赠多少万元的物资款?20.已知向量函数(1)若时,不等式恒成立,求实数的取值范围;(2)当时,讨论函数的零点情况.21.已知的三个顶点是,直线过点且与边所在直线平行.(1)求直线的方程;(2)求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.2、B【解析】函数的定义域为,且,即函数为偶函数,当时,,设,则:,据此可得:,据此有:,即函数是区间上的减函数,由函数的解析式可知:,则函数在区间上有一个零点,结合函数的奇偶性可得函数在R上有2个零点.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点3、C【解析】根据题意写出函数表达式为:,在上仅有一个零点分两种情况,情况一:在第一段上有零点,,此时检验第二段无零点,故满足条件;情况二,第二段有零点,以上两种情况并到一起得到:.故答案为C.点睛:在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.4、D【解析】图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D5、C【解析】利用同角平方关系可得,,结合可得,从而可得的取值范围,进而可判断三角形的形状【详解】解:,,为三角形内角,,为钝角,即三角形为钝角三角形故选C【点睛】本题主要考查了利用同角平方关系的应用,其关键是变形之后从的符号中判断的取值范围,属于三角函数基本技巧的运用6、D【解析】先求得全集U和,根据补集运算的概念,即可得答案.【详解】由题意得全集,,所以.故选:D7、D【解析】选项A中,函数为奇函数,但无最小值,故满足题意选项B中,函数为偶函数,不合题意选项C中,函数为奇函数,但无最小值,故不合题意选项D中,函数,为奇函数,且有最小值,符合题意选D8、D【解析】借助正方体模型还原几何体,进而求解表面积即可.【详解】解:如图,在边长为的正方体模型中,将三视图还原成直观图为三棱锥,其中,均为直角三角形,为等边三角形,,所以该几何体的表面积为故选:D9、B【解析】由题意,代入扇形的面积公式计算即可.【详解】因为扇形的半径为,圆心角为,所以由扇形的面积公式得.故选:B10、C【解析】根据指数函数的性质判断,利用特殊值判断,利用对数函数的性质判断,利用偶函数的性质判断【详解】对于,,是指数函数,在整个定义域内单调递增,不符合题意;对于,,有,,不是减函数,不符合题意;对于,为对数函数,整个定义域内单调递减,符合题意;对于,,为偶函数,整个定义域内不是单调函数,不符合题意,故选C【点睛】本题主要考查指数函数的性质、单调性是定义,对数函数的性质以及偶函数的性质,意在考查综合利用所学知识解答问题的能力,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.12、(1)(2)【解析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.13、【解析】长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:,则这个球的表面积是:故答案为:【点睛】本题考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力14、①.②.【解析】由题设知:是的根,应用根与系数关系即可求参数值.【详解】由题设,是的根,∴,即,.故答案为:,.15、【解析】由已知凑配出积为定值,然后由基本不等式求得最小值【详解】因为,,且,所以,当且仅当,即时等号成立故答案为:16、【解析】利用指数函数的性质即可求解.【详解】,即,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2).【解析】(1)根据指数幂的运算法则和对数的运算性质计算即可;(2)不等式化为,根据不等式对应方程的两根写出不等式的解集【详解】(1)(2)不等式可化为,不等式对应方程的两根为,,且(其中);所以原不等式的解集为18、,2,.【解析】先对函数进行化简,然后结合性质可求.【详解】;最小正周期为;当,即时,取到最大值;当,即时,取到最小值;【点睛】本题主要考查三角函数的性质,一般是把目标式化简为标准型,然后结合性质求解,侧重考查数学抽象的核心素养.19、(1);(2)当年产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.【解析】(1)分、两种情况讨论,结合利润销售收入成本,可得出年利润(万元)关于年产量(千件)的函数解析式;(2)利用二次函数的基本性质、基本不等式可求得函数的最大值及其对应的值,由此可得出结论.【小问1详解】由题意可知,当时,,当时,,故有;【小问2详解】当时,,即时,,当时,有,当且仅当时,,因为,所以时,,答:当产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.20、(1);(2)见解析【解析】(1)由题意得,结合不等式恒成立,建立m的不等式组,从而得到实数的取值范围;(2))令得:即,对m分类讨论即可得到函数的零点情况.【详解】(1)由题意得,,当时,∴,又恒成立,则解得:(2)令得:得:,则.由图知:当或,即或时,0个零点;当或,即或时,1个零点;当或,即或时,2个零点;当,即时,3个零点.综上:或时,0个零点;或时,1个零点;或时,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产企业2人巡检制度
- 产品生产质量否决制度
- 煤站安全生产规章制度
- 光伏生产技术管理制度
- 木制品生产管理制度
- 生产物料预警制度
- 专职安全生产管理制度
- 化工生产五不准制度
- 仓库文明生产管理制度
- 机器生产追溯制度
- 2025成人肠造口护理指南课件
- 电焊工安全宣讲课件
- 水泵基础知识培训课件教学
- 内镜院感培训课件
- 2026中征(北京)征信有限责任公司招聘13人考试题库附答案
- 期末重点易错知识点复习(课件)-2025-2026学年一年级上册数学北师大版
- 2026年杨凌职业技术学院单招职业技能考试题库含答案详解
- 2025云南昆明元朔建设发展有限公司第二批收费员招聘9人笔试考试参考题库及答案解析
- 国开本科《国际法》期末真题及答案2025年
- 2025年榆林神木市信息产业发展集团招聘备考题库(35人)及完整答案详解1套
- 2025新疆能源(集团)有限责任公司共享中心招聘备考题库(2人)带答案详解(完整版)
评论
0/150
提交评论