版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届新疆阿克苏地区库车县乌尊镇乌尊中学高二上数学期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角A,B,C所对的边分别为a,b,c,若,,的面积为10,则的值为()A. B.C. D.2.函数,则的值为()A. B.C. D.3.南北朝时期杰出的数学家祖冲之的儿子祖暅在数学上也有很多创造,其最著名的成就是祖暅原理:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,现有一个圆柱体和一个长方体,它们的底面面积相等,高也相等,若长方体的底面周长为,圆柱体的体积为,根据祖暅原理,可推断圆柱体的高()A.有最小值 B.有最大值C.有最小值 D.有最大值4.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.5.过双曲线的右焦点F作一条渐近线的垂线,垂足为M,且FM的中点A在双曲线上,则双曲线离心率e等于()A. B.C. D.6.已知五个数据3,4,x,6,7的平均数是x,则该样本标准差为()A.1 B.C. D.27.已知等比数列中,,前三项之和,则公比的值为()A1 B.C.1或 D.或8.从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点;从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图①,一个光学装置由有公共焦点的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,如图②,此光线从点发出,经两次反射后又回到了点,历时秒;若,则的长轴长与的实轴长之比为()A. B.C. D.9.已知直线,两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.设双曲线的左、右顶点分别为、,点在双曲线上第一象限内的点,若的三个内角分别为、、且,则双曲线的渐近线方程为()A. B.C. D.11.如图所示,在中,,,,AD为BC边上的高,;若,则的值为()A. B.C. D.12.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某天上午只排语文、数学、体育三节课,则体育不排在第一节课的概率为_________14.某班名学生期中考试数学成绩的频率分布直方图如图所示.根据频率分布直方图,估计该班本次测试平均分为______15.若双曲线的左、右焦点为,,直线与双曲线交于两点,且,为坐标原点,又,则该双曲线的离心率为__________.16.已知数列满足,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线过点,且其倾斜角是直线的倾斜角的(1)求直线的方程;(2)若直线与直线平行,且点到直线的距离是,求直线的方程18.(12分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.19.(12分)已知椭圆C:的左、右焦点分别为F1,F2,离心率为,椭圆C上点M满足(1)求椭圆C的标准方程:(2)若过坐标原点的直线l交椭圆C于P,Q两点,求线段PQ长为时直线l的方程20.(12分)已知椭圆的下焦点为、上焦点为,其离心率.过焦点且与x轴不垂直的直线l交椭圆于A、B两点(1)求实数m的值;(2)求△ABO(O为原点)面积的最大值21.(12分)已知椭圆的短轴长是2,且离心率为(1)求椭圆E的方程;(2)已知,若直线与椭圆E相交于A,B两点,线段AB的中点为M,是否存在常数,使恒成立,并说明理由22.(10分)在一次重大军事联合演习中,以点为中心的海里以内海域被设为警戒区域,任何船只不得经过该区域.已知点正北方向海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东,且与点相距海里的位置,经过小时又测得该船已行驶到位于点北偏东,且与点相距海里的位置(1)求该船的行驶速度(单位:海里/小时);(2)该船能否不改变方向继续直线航行?请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由同角公式求出,根据三角形面积公式求出,根据余弦定理求出,根据正弦定理求出.【详解】因为,所以,因为,的面积为10,所以,故,从而,解得,由正弦定理得:.故选:A.【点睛】本题考查了同角公式,考查了三角形的面积公式,考查了余弦定理,考查了正弦定理,属于基础题.2、B【解析】求出函数的导数,代入求值即可.【详解】函数,故,所以,故选:B3、C【解析】由条件可得长方体的体积为,设长方体的底面相邻两边分别为,根据基本不等式,可求出底面面积的最大值,进而求出高的最小值,得出结论.【详解】依题意长方体的体积为,设圆柱的高为长方体的底面相邻两边分别为,,当且仅当时,等号成立,.故选:C.【点睛】本题以数学文化为背景,考查基本不等式求最值,要认真审题,理解题意,属于基础题.4、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D5、A【解析】根据题意可表示出渐近线方程,进而可知的斜率,表示出直线方程,求出的坐标进而求得A点坐标,代入双曲线方程整理求得和的关系式,进而求得离心率【详解】:由题意设相应的渐近线:,则根据直线的斜率为,则的方程为,联立双曲线渐近线方程求出,则,,则的中点,把中点坐标代入双曲线方程中,即,整理得,即,求得,即离心率为,故答案为:6、B【解析】先求出的值,然后利用标准差公式求解即可【详解】解:因为五个数据3,4,x,6,7的平均数是x,所以,解得,所以标准差,故选:B7、C【解析】根据条件列关于首项与公比的方程组,即可解得公比,注意等比数列求和公式使用条件.【详解】等比数列中,,前三项之和,若,,,符合题意;若,则,解得,即公比的值为1或,故选:C【点睛】本题考查等比数列求和公式以及基本量计算,考查基本分析求解能力,属基础题.8、D【解析】在图①和图②中,利用椭圆和双曲线的定义,分别求得和的周长,再根据光速相同,且求解.【详解】在图①中,由椭圆的定义得:,由双曲线的定义得,两式相减得,所以的周长为,在图②中,的周长为,因为光速相同,且,所以,即,所以,即的长轴长与的实轴长之比为,故选:D9、A【解析】根据线面、面面位置关系有关知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,根据面面垂直的判定定理可知,A选项正确,对于B选项,当,时,和可能相交,B选项错误,对于C选项,当,时,可能含于,C选项错误,对于D选项,当,时,可能含于,D选项错误.故选:A10、B【解析】设点,其中,,求得,且有,,利用两角和的正切公式可求得的值,进而可求得的值,即可得出该双曲线的渐近线的方程.【详解】易知点、,设点,其中,,且,,且,,,所以,,,因为,所以,,则,因此,该双曲线渐近线方程为.故选:B.11、B【解析】根据题意求得,化简得到,结合,求得的值,即可求解.【详解】在中,,,,AD为BC边上的高,可得,由又因为,所以,所以.故选:B.12、C【解析】根据题先求出阅读过西游记人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】写出语文、数学、体育的所有可能排列,找出其中体育不排在第一节课的情况,利用概率公式计算即可.【详解】所有可能结果如下:(语文,数学,体育);(语文,体育,数学);(数学,语文,体育):(数学,体育,语文);(体育,语文,数学);(体育,数学,语文),其中体育不排在第一节课的情况有四种,则体育不排在第一节课的概率14、【解析】将每个矩形底边的中点值乘以对应矩形的面积,即可得解.【详解】由频率分布直方图可知,该班本次测试平均分为.故答案为:.15、【解析】根据直线和双曲线的对称性,结合圆的性质、双曲线的定义、三角形面积公式、双曲线离心率公式进行求解即可.【详解】由直线与双曲线的对称性可知,点与点关于原点对称,在三角形中,,所以,是以为直径的圆与双曲线的交点,不妨设在第一象限,,因为圆是以为直径,所以圆的半径为,因为点在圆上,也在双曲线上,所以有,联立化简可得,整理得,,所以,由所以,又因为,联立可得,,因为为圆的直径,所以,即,,所以离心率.故答案为:【点睛】关键点睛:利用直线和双曲线的对称性,结合圆的性质进行求解是解题的关键.16、1023【解析】由数列递推公式求特定项,依次求下去即可解决.【详解】数列中,则,,,,,,故答案为:1023三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)先求得直线的倾斜角,由此求得直线的倾斜角和斜率,进而求得直线的方程;(2)设出直线的方程,根据点到直线的距离列方程,由此求解出直线的方程【详解】解(1)直线的倾斜角为,∴直线的倾斜角为,斜率为,又直线过点,∴直线的方程为,即;(2)设直线的方程为,则点到直线的距离,解得或∴直线的方程为或18、(1);(2).【解析】(1)根据方程为焦点在轴上的椭圆的条件列不等式组,解不等式组求得的取值范围.(2)求得为真命题时的取值范围,结合是的必要不充分条件列不等式组,解不等式组求得的取值范围.【详解】(1)若是真命题,所以,解得,所以的取值范围是.(2)由(1)得,是真命题时,的取值范围是,为真命题时,,所以的取值范围是因为是的必要不充分条件,所以,所以,等号不同时取得,所以【点睛】本小题主要考查椭圆、双曲线,考查必要不充分条件求参数.19、(1)(2)【解析】(1)依题意可得,即可求出、,即可求出椭圆方程;(2)首先求出直线斜率不存在时弦显然可得直线的斜率存在,设直线方程为、、,联立直线与椭圆方程,消元列出韦达定理,再根据弦长公式得到方程,求出,即可得解;【小问1详解】解:依题意,解得,所以椭圆方程为;【小问2详解】解:当直线的斜率不存在时,直线的方程为,此时,不符合题意;所以直线的斜率存在,设直线方程为,则,消元整理得,设,,则,,所以,即,解得,所以直线的方程为;20、(1)2;(2)﹒【解析】(1)根据已知条件得,,结合离心率,即可解得答案(2)设直线的方程,与椭圆方程联立,利用弦长公式以及三角形的面积公式,基本不等式即可得出答案【小问1详解】由题意可得,,,∵离心率,∴,∵,∴,解得【小问2详解】由(1)知,椭圆,上焦点,设,,,,直线的方程为:,联立,得,∴,,∴,∴,∴,当且仅当,即时等号成立,∴为原点)面积的最大值为21、(1);(2)存在,理由见解析.【解析】(1)利用离心率,短轴长求出a,b,即可求得椭圆方程.(2)联立直线与椭圆方程,利用韦达定理计算判定,由M为线段AB中点即可确定存在常数推理作答.【小问1详解】因椭圆的短轴长是2,则,而离心率,解得,所以椭圆方程为.【小问2详解】存在常数,使恒成立,
由消去y并整理得:,设,,则,,又,,,则有,而线段AB的中点为M,于是得,并且有所以存在常数,使恒成立.22、(1)海里/小时;(2)该船要改变航行方向,理由见解析.【解析】(1)设一个单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年松滋市第二人民医院招聘备考题库带答案详解
- 2025年高职市场营销(网络实操技术)试题及答案
- 2025年中职服装设计与工艺(服装裁剪)试题及答案
- 2025年大学第二学年(网络工程)网络协议分析试题及答案
- 2025年大学大二(药学)药物分析阶段测试题及答案
- 2025年中职电磁辐射检验检测技术(电磁辐射检验基础)试题及答案
- 2025年中职计算机系统维护(系统维护应用)试题及答案
- 2025年高职导游服务类(导游操作规范)试题及答案
- 2025年大学水利水电工程(水土保持学)试题及答案
- 2025年大学通识选修(西方哲学原著选读)试题及答案
- 电吹管保养维护知识培训课件
- 2.3 第2课时 中国第一大河-长江 导学案(含答案)湘教版(2024)地理八年级上册
- 医院一站式服务
- 去极端化教育课件
- 成长故事九年级作文(10篇)
- 2025年居间合伙人居间收益分配合同范本
- DB37∕T 4559-2022 长期护理保险定点护理服务机构护理服务与管理评价规范
- 水利资料培训课件
- 公厕保洁作业管理制度
- 企业新媒体KOS矩阵研究报告
- 葫芦灸课件教学课件
评论
0/150
提交评论