版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄市2026届高一数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数且,则该函数过的定点为()A. B.C. D.2.为了得到函数图象,只需把的图象上的所有点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.棱长分别为1、、2的长方体的8个顶点都在球的表面上,则球的体积为A. B.C. D.4.已知,都为单位向量,且,夹角的余弦值是,则A. B.C. D.5.已知点,,,则的面积为()A.5 B.6C.7 D.86.将一个直角三角形绕其一直角边所在直线旋转一周,所得的几何体为()A.一个圆台 B.两个圆锥C.一个圆柱 D.一个圆锥7.若偶函数在上单调递减,且,则不等式的解集是()A. B.C. D.8.函数(其中为自然对数的底数)的图象大致为()A. B.C. D.9.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=010.函数在区间上的最大值为A.2 B.1C. D.1或二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则使函数有零点的实数的取值范围是____________12.已知是定义在上的偶函数,且当时,,则当时,___________.13.对数函数(且)的图象经过点,则此函数的解析式________14.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.15.已知定义在上的函数满足,且当时,.若对任意,恒成立,则实数的取值范围是______16.已知函数的零点为,则,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)当时,求;(2)若,求18.已知函数,.(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值和最小值.19.某工厂利用辐射对食品进行灭菌消毒,先准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系式为p=k4x+5(0≤x≤15),若距离为10km时,测算宿舍建造费用为20万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需10万元,铺设路面每千米成本为4万元.设(1)求fx(2)宿舍应建在离工厂多远处,可使总费用最小,并求fx20.如图,在矩形中,点是边上中点,点在边上(1)若点是上靠近的三等分点,设,求的值(2)若,当时,求的长21.已知函数fx=ax+b⋅a-x((1)判断函数fx(2)判断函数fx在0,+(3)若fm-3不大于b⋅f2,直接写出实数条件①:a>1,b=1;条件②:0<a<1,b=-1.注:如果选择条件①和条件②分别解答,按第一个解答计分.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.2、D【解析】利用三角函数图象的平移规律可得结论.【详解】因为,所以,为了得到函数的图象,只需把的图象上的所有点向右平移个单位.故选:D.3、A【解析】球的直径为长方体的体对角线,又体对角线的长度为,故体积为,选A.4、D【解析】利用,结合数量积的定义可求得的平方的值,再开方即可【详解】依题意,,故选D【点睛】本题考查了平面向量数量积的性质及其运算,属基础题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.5、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A6、D【解析】依题意可知,这是一个圆锥.7、A【解析】根据奇偶性,可得在上单调递增,且,根据的奇偶性及单调性,可得,根据一元二次不等式的解法,即可得答案.【详解】由题意得在上单调递增,且,因为,所以,解得,所以不等式的解集是.故选:A8、A【解析】由为偶函数,排除选项B、D,又,排除选项C,从而即可得答案.【详解】解:令,因为,且定义域为,所以为偶函数,所以排除选项B、D;又,所以排除选项C;故选:A.9、A【解析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【点睛】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.10、A【解析】利用同角三角函数的基本关系化简函数f(x)的解析式为﹣(sinx﹣1)2+2,根据二次函数的性质,求得函数f(x)的最大值【详解】∵函数f(x)=cos2x+2sinx=1﹣sin2x+2sinx=﹣(sinx﹣1)2+2,∴sinx≤1,∴当sinx=1时,函数f(x)取得最大值为2,故选A【点睛】本题主要考查同角三角函数的基本关系,正弦函数的定义域和值域,二次函数的性质,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,进而作出的图象,然后通过数形结合求得答案.【详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.12、【解析】设,则,求出的表达式,再由即可求解.【详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.13、【解析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式.【详解】由已知条件可得,可得,因为且,所以,.因此,所求函数解析式为.故答案为:.14、5【解析】利用平移变换和反函数的定义得到的解析式,进而得解.【详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【点睛】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.15、【解析】根据题意求出函数和图像,画出图像根据图像解题即可.【详解】因为满足,即;又由,可得,因为当时,所以当时,,所以,即;所以当时,,所以,即;根据解析式画出函数部分图像如下所示;因为对任意,恒成立,根据图像当时,函数与图像交于点,即的横坐标即为的最大值才能符合题意,所以,解得,所以实数的取值范围是:.故答案为:.16、2【解析】根据函数的单调性及零点存在定理即得.【详解】∵函数,函数在上单调递增,又,∴,即.故答案为:2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)化简求得集合,根据补集的概念运算可得结果;(2)由,根据,求出,再求出,计算可求出结果.【小问1详解】由题意得:当时,所以【小问2详解】由题意知:又所以方程的一个根为4,解得,所以,符合题设条件,故18、(1);(2),.【解析】(1)将函数化为的形式后可得最小正周期.(2)由,可得,将作为一个整体,结合图象可得函数的最值试题解析:(1)∴的最小正周期.(2)∵,∴∴当,即时,,当,即时,.19、(1)fx=9004x+5【解析】(1)根据距离为10km时,测算宿舍建造费用为20万元,可求k的值,由此,可得f(x)的表达式;(2)fx【详解】解:(1)由题意可知,距离为10km时,测算宿舍建造费用为20万元,则20=k4×10+5,解得k(2)因为fx=9004x+5答:宿舍应建在离工厂254km处,可使总费用最小,f【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方20、(1);(2).【解析】(1),∵是边的中点,点是上靠近的三等分点,∴,又∵,,∴,;(2)设,则,以,为基底,,,又,∴,解得,故长为21、(1)答案见解析(2)答案见解析(3)答案见解析【解析】(1)定义域均为R,代入f-x化简可得出与fx的关系,从而判断奇偶性;(2)利用定义任取x1,x2∈0,+∞,且x1【小问1详解】解:选择条件①:a>1,函数fxfx的定义域为R,对任意x∈R,则-x∈R因为f-x所以函数fx是偶函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年松滋市第二人民医院招聘备考题库带答案详解
- 2025年高职市场营销(网络实操技术)试题及答案
- 2025年中职服装设计与工艺(服装裁剪)试题及答案
- 2025年大学第二学年(网络工程)网络协议分析试题及答案
- 2025年大学大二(药学)药物分析阶段测试题及答案
- 2025年中职电磁辐射检验检测技术(电磁辐射检验基础)试题及答案
- 2025年中职计算机系统维护(系统维护应用)试题及答案
- 2025年高职导游服务类(导游操作规范)试题及答案
- 2025年大学水利水电工程(水土保持学)试题及答案
- 2025年大学通识选修(西方哲学原著选读)试题及答案
- 国家职业技术技能标准 6-20-99-00 增材制造设备操作员 人社厅发202231号
- 吕国泰《电子技术》第7章触发器和时序逻辑电路
- 厂房建设工程投标方案(技术方案)
- 2023农业执法大比武复习试题附答案
- 路灯养护投标方案
- 深价协20178号 深圳市建设工程造价咨询业收费市场价标准
- 中国高血糖危象诊断与治疗指南
- 酒精体积分数质量分数密度对照表优质资料
- 落地式钢管脚手架工程搭拆施工方案
- 办公室节能减排措施
- 数字信号处理课程实验教学大纲
评论
0/150
提交评论